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Before we begin

• Please, write down your expectations from the course.
• Typos of the course
• Recommendations are always welcome.
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Recap

• Motivation for studying of statistical physics
• Review on thermodynamics
• A summary on thermodynamics through statistical relations
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Today

A crash course on statistical
mechanics.
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A crash course on statistical mechanics.

“With thermodynamics, one can calculate almost everything
crudely; with kinetic theory, one can calculate fewer things,
but more accurately; and with statistical mechanics, one
can calculate almost nothing exactly.” Eugene Paul Wigner
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The heroes



The micro-canonical ensemble

Consider an isolated system consisting of N particles in a specified
volume V, whose energy lies between E and E+ δE.

• To introduce probabilities, we consider an ensemble of many
identical systems.

• At equilibrium, all states are equiprobable.

The probability to found the system in a state r with energy Er is :

Pr =
{
C if E < Er < E+ δE
0 Otherwise

where C is a constant which can be determinated by the
normalization condition

∑
Pr = 1.

An ensemble that follows the probability distribution (6) to describe
isolated systems, is called the microcanonical ensemble.
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The canonical ensemble

Now, we consider a system A in contact with a heat reservoir A′
where A << A′. We impose two constraints :

• The distinguishability of the system A.
• The additivity of the energies (weak interactions between A and
A′). That is, Er + E′ = E0.

Question : What is the probability Pr of finding system A in any one
particular microstate r of energy Er ?
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The canonical ensemble

Answer :
Pr =

e−βEr∑
r
e−βEr

This expression is central in statistical physics, the exponential
factor e−βEr is called the “Boltzmann factor” and the probability
distribution is the “canonical distribution”. Any ensemble describing
systems interacting with a heat bath characterized with a
temperature T, following the canonical distribution, is called the
“canonical ensemble”.
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Application : Paramagnetism

Paramagnetism is a phenomenon due to atoms or molecules having
a permanent magnetic momentum µ.

Consider a substance containing N0 magnetic atoms (each atom
have a spin s = 1

2 ) per unit volume, placed in an external magnetic
field H. We assume that each atom interact weakly with the other
atoms and that the substance is at absolute temperature T.

What is the mean magnetic momentum µ̄H of such an atom ?
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Application : Paramagnetism
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Figure 1: Magnetization with respect to y. 10



Other ensembles

Imagine the system exchanging the energy E and some quantity X.

The probability Pr of finding the system A in a microstate r is :

Pr ∝ e−βEr−αXr

A particular example is the grand canonical ensemble, in which
X = N, meaning that the system can exchange the energy E and the
particles N. The parameter β is the temperature of the ensemble,
and α = −µ

kT , where µ is the chemical potential of the reservoir.
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Our lord and savior “Z”



Connections with thermodynamics

Statistical physics has a dear friend that we’ve been trying our best
to hide so far. This friend, is our greatest ally in order to grasp the
physical situations of our interest.

Z =
∑
r
e−βEr . (1)

“Z” is a sum over states, called the partition function. Z is used as
symbol for the parition function due to its name in German
“Zustandssumme”

12



Connections with thermodynamics

Statistical physics has a dear friend that we’ve been trying our best
to hide so far. This friend, is our greatest ally in order to grasp the
physical situations of our interest.

Z =
∑
r
e−βEr . (1)

“Z” is a sum over states, called the partition function. Z is used as
symbol for the parition function due to its name in German
“Zustandssumme”

12



Application : The one dimensional harmonic oscillator

The 1D harmonic oscillator is a famous model in physics, it is used to
describe any physical situation where the potential energy is a
quadratic function of the coordinate, such as the vibration of
molecule around its position of equilibrium.

Figure 2: Energy levels of the 1D harmonic oscillator
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Application : The one dimensional harmonic oscillator

Z =
1

2 sinh(−β ℏω
2 )

Ē = −∂ ln Z
∂β

= −ℏω
2 coth(−β

ℏω
2 ),

S = k
(
ln Z+ βĒ

)
= k

[
− ln

(
2 sinh

(
ℏω
2kT

))
+

ℏω
2kT coth

(
ℏω
2kT

)]
,

F = −kT ln Z = kT ln
(
2 sinh

(
ℏω
2kT

))
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Statistics of Ideal Gases



Statistical distribution functions

Consider a gas of identical particles characterized by a volume V,
temperature T and a number of possible quantum states R. Each
particle can be in quantum state labeled by r with an energy ϵr and
the number of particles occupying the state r is nr.

ER = n1ϵ1 + n2ϵ2 + · · · =
∑
r
nrϵr,

The partition function is :

Z =
∑
R
e−βER =

∑
R
e−β(n1ϵ1+n2ϵ2+... ),

The mean number of particles in a state s is :

n̄s = − 1
β

∂ ln Z
∂ϵs
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Maxwell-Boltzmann statistics

The Maxwell-Boltzmann statistics takes into account the
distinguishability of particles, as a result the partition function given
by :

Z =
∑

n1,n2,...

N!
n1!n2! . . .

e−β(n1ϵ1+n2ϵ2+... ),

The mean number of particles in a state s is :

n̄s = N e−βϵs∑
r
e−βϵr

.

This distribution is called : the Maxwell-Boltzmann distribution.
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Photon statistics

Now, we will consider a special case of the Bose-Einstein statistics
where the total number N is not fixed. The partition function is given
by :

Z =
∑
R
e−β(n1ϵ1+n2ϵ2+... ),

then :
ln Z = −

∑
r
ln

(
1− e−βϵr

)
.

The mean number of particles in the state s :

n̄s =
1

eβϵs − 1 .

This is called the “Planck distribution”.
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Fermi-Dirac statistics

We return to the case where the total number N of particles is fixed :∑
r
nr = N.

Recall that the mean of the number of particles can be

written as :

n̄s =

∑
R
nse−β(n1ϵ1+n2ϵ2+... )

∑
R
e−β(n1ϵ1+n2ϵ2+... )

(2)

=

∑
ns nse

−βnsϵs ∑(s)
n1...n2 e

−β(n1ϵ1+n2ϵ2+... )∑
ns e−βnsϵs

∑(s)
n1...n2 e−β(n1ϵ1+n2ϵ2+... )

. (3)

n̄s =
1

eα+βϵs + 1 . (4)

This is called the Fermi-Dirac distribution.
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Bose-Einstein statistics

Following the same reasoning, but this time the sum ranges over all
values of the numbers n1,n2, . . . such that nr = 0, 1, 2, 3 . . . .

n̄s =
1

e(βϵs+α) − 1
. (5)

α = −βµ is again the chemical potential and the formula (??)
represents the “Bose-Einstein statistics”.
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Remark : The ground state

In the limit T→ 0, BE and FD statistics behaves differently.

• For BE statistics :
It is fine to have multiple particles in the same state, so to reach
the lowest energy of the whole gas (at T→ 0), all the particles
need to be placed in their lowest-lying state of energy ϵ1.

• For FD statistics :
One particle per state. Then, in order to reach the lowest energy
state of the whole gas, one need to populate all the
single-particle states starting from the state of the lowest
energy ϵ1 until all the particles are accommodated. The gas as a
whole is in its state of lowest energy, but there are particles that
have a very high energy compared to ϵ1.

20



Remark : The ground state

In the limit T→ 0, BE and FD statistics behaves differently.

• For BE statistics :
It is fine to have multiple particles in the same state, so to reach
the lowest energy of the whole gas (at T→ 0), all the particles
need to be placed in their lowest-lying state of energy ϵ1.

• For FD statistics :
One particle per state. Then, in order to reach the lowest energy
state of the whole gas, one need to populate all the
single-particle states starting from the state of the lowest
energy ϵ1 until all the particles are accommodated. The gas as a
whole is in its state of lowest energy, but there are particles that
have a very high energy compared to ϵ1.

20



Remark : The ground state

In the limit T→ 0, BE and FD statistics behaves differently.

• For BE statistics :
It is fine to have multiple particles in the same state, so to reach
the lowest energy of the whole gas (at T→ 0), all the particles
need to be placed in their lowest-lying state of energy ϵ1.

• For FD statistics :
One particle per state. Then, in order to reach the lowest energy
state of the whole gas, one need to populate all the
single-particle states starting from the state of the lowest
energy ϵ1 until all the particles are accommodated. The gas as a
whole is in its state of lowest energy, but there are particles that
have a very high energy compared to ϵ1.

20



Remark : The classical limit of quantum statistics

As β → 0 in FD and BE statistics, large energies ϵr contribute to the
sum. To prevent this sum from exceeding N, α must become large
enough to that each ϵr is sufficiently small. That is eα+βϵr ≫ 1, then
FD and BE statistics reduces to :

n̄r = N e−βϵr∑
r e−βϵr

.

Then, in the classical limit BE and FD statistics reduces to MB
statistics.
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Further readings

• Chapter 6, 7 and 9 of “F. Reif - Fundamentals of Statistical and
Thermal Physics.”

• Chapter 5, 6, 7 and 9 of “C. Ngo H. Ngo - Physique statistique”.
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Next lecture is dedicated to
exercises.
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Thank you for your attendance
and your attention.
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