# Advanced Statistical Physics 

## Lecture 2 : Fundamental Concepts - Part II

Zakaria Mzaouali
28 March 2019

Mohammed V University.
Rabat, Morocco.

## Before we begin

- Please, write down your expectations from the course.
- Typos of the course
- Recommendations are always welcome.


## Recap

- Motivation for studying of statistical physics
- Review on thermodynamics
- A summary on thermodynamics through statistical relations


## A crash course on statistical mechanics.

## Table of contents

1. The heroes
2. Our lord and savior "Z"
3. Statistics of Ideal Gases

## A crash course on statistical mechanics.

"With thermodynamics, one can calculate almost everything crudely; with kinetic theory, one can calculate fewer things, but more accurately; and with statistical mechanics, one can calculate almost nothing exactly." Eugene Paul Wigner

The heroes

## The micro-canonical ensemble

Consider an isolated system consisting of $N$ particles in a specified volume $V$, whose energy lies between $E$ and $E+\delta E$.

## The micro-canonical ensemble

Consider an isolated system consisting of $N$ particles in a specified volume $V$, whose energy lies between $E$ and $E+\delta E$.

- To introduce probabilities, we consider an ensemble of many identical systems.


## The micro-canonical ensemble

Consider an isolated system consisting of $N$ particles in a specified volume $V$, whose energy lies between $E$ and $E+\delta E$.

- To introduce probabilities, we consider an ensemble of many identical systems.
- At equilibrium, all states are equiprobable.


## The micro-canonical ensemble

Consider an isolated system consisting of $N$ particles in a specified volume $V$, whose energy lies between $E$ and $E+\delta E$.

- To introduce probabilities, we consider an ensemble of many identical systems.
- At equilibrium, all states are equiprobable.

The probability to found the system in a state $r$ with energy $E_{r}$ is :

$$
P_{r}= \begin{cases}C & \text { if } E<E_{r}<E+\delta E \\ 0 & \text { Otherwise }\end{cases}
$$

## The micro-canonical ensemble

Consider an isolated system consisting of $N$ particles in a specified volume $V$, whose energy lies between $E$ and $E+\delta E$.

- To introduce probabilities, we consider an ensemble of many identical systems.
- At equilibrium, all states are equiprobable.

The probability to found the system in a state $r$ with energy $E_{r}$ is:

$$
P_{r}= \begin{cases}C & \text { if } E<E_{r}<E+\delta E \\ 0 & \text { Otherwise }\end{cases}
$$

where $C$ is a constant which can be determinated by the normalization condition $\sum P_{r}=1$.

## The micro-canonical ensemble

Consider an isolated system consisting of $N$ particles in a specified volume $V$, whose energy lies between $E$ and $E+\delta E$.

- To introduce probabilities, we consider an ensemble of many identical systems.
- At equilibrium, all states are equiprobable.

The probability to found the system in a state $r$ with energy $E_{r}$ is :

$$
P_{r}= \begin{cases}C & \text { if } E<E_{r}<E+\delta E \\ 0 & \text { Otherwise }\end{cases}
$$

where $C$ is a constant which can be determinated by the normalization condition $\sum P_{r}=1$.
An ensemble that follows the probability distribution (6) to describe isolated systems, is called the microcanonical ensemble.

## The canonical ensemble

Now, we consider a system $A$ in contact with a heat reservoir $A^{\prime}$ where $A \ll A^{\prime}$. We impose two constraints :

## The canonical ensemble

Now, we consider a system $A$ in contact with a heat reservoir $A^{\prime}$ where $A \ll A^{\prime}$. We impose two constraints :

- The distinguishability of the system $A$.


## The canonical ensemble

Now, we consider a system $A$ in contact with a heat reservoir $A^{\prime}$ where $A \ll A^{\prime}$. We impose two constraints :

- The distinguishability of the system $A$.
- The additivity of the energies (weak interactions between $A$ and $A^{\prime}$ ). That is, $E_{r}+E^{\prime}=E^{0}$.


## The canonical ensemble

Now, we consider a system $A$ in contact with a heat reservoir $A^{\prime}$ where $A \ll A^{\prime}$. We impose two constraints :

- The distinguishability of the system A.
- The additivity of the energies (weak interactions between $A$ and $\left.A^{\prime}\right)$. That is, $E_{r}+E^{\prime}=E^{0}$.

Question: What is the probability $P_{r}$ of finding system $A$ in any one particular microstate $r$ of energy $E_{r}$ ?

## The canonical ensemble

Answer:

$$
P_{r}=\frac{e^{-\beta E_{r}}}{\sum_{r} e^{-\beta E_{r}}}
$$

This expression is central in statistical physics, the exponential factor $e^{-\beta E_{r}}$ is called the "Boltzmann factor" and the probability distribution is the "canonical distribution". Any ensemble describing systems interacting with a heat bath characterized with a temperature $T$, following the canonical distribution, is called the "canonical ensemble".

## Application : Paramagnetism

Paramagnetism is a phenomenon due to atoms or molecules having a permanent magnetic momentum $\mu$.

## Application : Paramagnetism

Paramagnetism is a phenomenon due to atoms or molecules having a permanent magnetic momentum $\mu$. Consider a substance containing $N_{0}$ magnetic atoms (each atom have a spin $s=\frac{1}{2}$ ) per unit volume, placed in an external magnetic field $H$. We assume that each atom interact weakly with the other atoms and that the substance is at absolute temperature $T$.

## Application : Paramagnetism

Paramagnetism is a phenomenon due to atoms or molecules having a permanent magnetic momentum $\mu$. Consider a substance containing $N_{0}$ magnetic atoms (each atom have a spin $s=\frac{1}{2}$ ) per unit volume, placed in an external magnetic field $H$. We assume that each atom interact weakly with the other atoms and that the substance is at absolute temperature $T$.

What is the mean magnetic momentum $\bar{\mu}_{H}$ of such an atom ?

## Application : Paramagnetism



Figure 1: Magnetization with respect to $y$.

## Other ensembles

Imagine the system exchanging the energy $E$ and some quantity $X$.

## Other ensembles

Imagine the system exchanging the energy $E$ and some quantity $X$. The probability $P_{r}$ of finding the system $A$ in a microstate $r$ is :

$$
P_{r} \propto e^{-\beta E_{r}-\alpha X_{r}}
$$

## Other ensembles

Imagine the system exchanging the energy $E$ and some quantity $X$. The probability $P_{r}$ of finding the system $A$ in a microstate $r$ is :

$$
P_{r} \propto e^{-\beta E_{r}-\alpha X_{r}}
$$

A particular example is the grand canonical ensemble, in which $X=N$, meaning that the system can exchange the energy $E$ and the particles $N$. The parameter $\beta$ is the temperature of the ensemble, and $\alpha=\frac{-\mu}{k T}$, where $\mu$ is the chemical potential of the reservoir.

Our lord and savior "Z"

## Connections with thermodynamics

Statistical physics has a dear friend that we've been trying our best to hide so far. This friend, is our greatest ally in order to grasp the physical situations of our interest.

## Connections with thermodynamics

Statistical physics has a dear friend that we've been trying our best to hide so far. This friend, is our greatest ally in order to grasp the physical situations of our interest.

$$
\begin{equation*}
Z=\sum_{r} e^{-\beta E_{r}} \tag{1}
\end{equation*}
$$

" $Z$ " is a sum over states, called the partition function. $Z$ is used as symbol for the parition function due to its name in German "Zustandssumme"

## Application : The one dimensional harmonic oscillator

The 1D harmonic oscillator is a famous model in physics, it is used to describe any physical situation where the potential energy is a quadratic function of the coordinate, such as the vibration of molecule around its position of equilibrium.

## Application : The one dimensional harmonic oscillator

The 1D harmonic oscillator is a famous model in physics, it is used to describe any physical situation where the potential energy is a quadratic function of the coordinate, such as the vibration of molecule around its position of equilibrium.


Figure 2: Energy levels of the 1D harmonic oscillator

## Application : The one dimensional harmonic oscillator

$$
z=\frac{1}{2 \sinh \left(-\beta \frac{\hbar \omega}{2}\right)}
$$

$$
\begin{aligned}
& \bar{E}=-\frac{\partial \ln Z}{\partial \beta}=-\frac{\hbar \omega}{2} \operatorname{coth}\left(-\beta \frac{\hbar \omega}{2}\right), \\
& S=k(\ln Z+\beta \bar{E})=k\left[-\ln \left(2 \sinh \left(\frac{\hbar \omega}{2 k T}\right)\right)+\frac{\hbar \omega}{2 k T} \operatorname{coth}\left(\frac{\hbar \omega}{2 k T}\right)\right], \\
& F=-k T \ln Z=k T \ln \left(2 \sinh \left(\frac{\hbar \omega}{2 k T}\right)\right)
\end{aligned}
$$

## Statistics of Ideal Gases

## Statistical distribution functions

Consider a gas of identical particles characterized by a volume $V$, temperature $T$ and a number of possible quantum states $R$. Each particle can be in quantum state labeled by $r$ with an energy $\epsilon_{r}$ and the number of particles occupying the state $r$ is $n_{r}$.

## Statistical distribution functions

Consider a gas of identical particles characterized by a volume $V$, temperature $T$ and a number of possible quantum states $R$. Each particle can be in quantum state labeled by $r$ with an energy $\epsilon_{r}$ and the number of particles occupying the state $r$ is $n_{r}$.

$$
E_{R}=n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots=\sum_{r} n_{r} \epsilon_{r},
$$

## Statistical distribution functions

Consider a gas of identical particles characterized by a volume $V$, temperature $T$ and a number of possible quantum states $R$. Each particle can be in quantum state labeled by $r$ with an energy $\epsilon_{r}$ and the number of particles occupying the state $r$ is $n_{r}$.

$$
E_{R}=n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots=\sum_{r} n_{r} \epsilon_{r}
$$

The partition function is :

$$
Z=\sum_{R} e^{-\beta E_{R}}=\sum_{R} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}
$$

## Statistical distribution functions

Consider a gas of identical particles characterized by a volume $V$, temperature $T$ and a number of possible quantum states $R$. Each particle can be in quantum state labeled by $r$ with an energy $\epsilon_{r}$ and the number of particles occupying the state $r$ is $n_{r}$.

$$
E_{R}=n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots=\sum_{r} n_{r} \epsilon_{r}
$$

The partition function is :

$$
Z=\sum_{R} e^{-\beta E_{R}}=\sum_{R} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}
$$

The mean number of particles in a state $s$ is:

$$
\bar{n}_{s}=-\frac{1}{\beta} \frac{\partial \ln Z}{\partial \epsilon_{s}}
$$

## Maxwell-Boltzmann statistics

The Maxwell-Boltzmann statistics takes into account the distinguishability of particles, as a result the partition function given by :

$$
Z=\sum_{n_{1}, n_{2}, \ldots} \frac{N!}{n_{1}!n_{2}!\ldots} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}
$$

## Maxwell-Boltzmann statistics

The Maxwell-Boltzmann statistics takes into account the distinguishability of particles, as a result the partition function given by :

$$
Z=\sum_{n_{1}, n_{2}, \ldots} \frac{N!}{n_{1}!n_{2}!\ldots} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}
$$

The mean number of particles in a state $s$ is:

$$
\bar{n}_{s}=N \frac{e^{-\beta \epsilon_{s}}}{\sum_{r} e^{-\beta \epsilon_{r}}} .
$$

This distribution is called : the Maxwell-Boltzmann distribution.

## Photon statistics

Now, we will consider a special case of the Bose-Einstein statistics where the total number $N$ is not fixed. The partition function is given by :

$$
Z=\sum_{R} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}
$$

then :

$$
\ln Z=-\sum_{r} \ln \left(1-e^{-\beta \epsilon_{r}}\right) .
$$

The mean number of particles in the state $s$ :

$$
\bar{n}_{s}=\frac{1}{e^{\beta \epsilon_{\mathrm{s}}}-1}
$$

This is called the "Planck distribution".

## Fermi-Dirac statistics

We return to the case where the total number $N$ of particles is fixed: $\sum_{r} n_{r}=N$.

## Fermi-Dirac statistics

We return to the case where the total number $N$ of particles is fixed: $\sum_{r} n_{r}=N$. Recall that the mean of the number of particles can be written as:

$$
\begin{align*}
\bar{n}_{s} & =\frac{\sum_{R} n_{s} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}}{\sum_{R} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}}  \tag{2}\\
& =\frac{\sum_{n_{s}} n_{s} e^{-\beta n_{s} \epsilon_{s}} \sum_{n_{1} \ldots n_{2}}^{(s)} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}}{\sum_{n_{s}} e^{-\beta n_{s} \epsilon_{s}} \sum_{n_{1} \ldots n_{2}}^{(s)} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}} \tag{3}
\end{align*}
$$

## Fermi-Dirac statistics

We return to the case where the total number $N$ of particles is fixed: $\sum_{r} n_{r}=N$. Recall that the mean of the number of particles can be written as :

$$
\begin{gather*}
\bar{n}_{s}=\frac{\sum_{R} n_{s} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}}{\sum_{R} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}}  \tag{2}\\
=\frac{\sum_{n_{s}} n_{s} e^{-\beta n_{s} \epsilon_{s}} \sum_{n_{1} \ldots n_{2}}^{s} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)}}{\sum_{n_{s}} e^{-\beta n_{s} \epsilon_{s}} \sum_{n_{1} \ldots n_{2}}^{(s)} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)} .}  \tag{3}\\
\quad \bar{n}_{s}=\frac{1}{e^{\alpha+\beta \epsilon_{s}}+1} . \tag{4}
\end{gather*}
$$

This is called the Fermi-Dirac distribution.

## Bose-Einstein statistics

Following the same reasoning, but this time the sum ranges over all values of the numbers $n_{1}, n_{2}, \ldots$ such that $n_{r}=0,1,2,3 \ldots$.

## Bose-Einstein statistics

Following the same reasoning, but this time the sum ranges over all values of the numbers $n_{1}, n_{2}, \ldots$ such that $n_{r}=0,1,2,3 \ldots$.

$$
\begin{equation*}
\bar{n}_{s}=\frac{1}{e^{\left(\beta \epsilon_{s}+\alpha\right)}-1} . \tag{5}
\end{equation*}
$$

## Bose-Einstein statistics

Following the same reasoning, but this time the sum ranges over all values of the numbers $n_{1}, n_{2}, \ldots$ such that $n_{r}=0,1,2,3 \ldots$.

$$
\begin{equation*}
\bar{n}_{s}=\frac{1}{e^{\left(\beta \epsilon_{s}+\alpha\right)}-1} . \tag{5}
\end{equation*}
$$

$\alpha=-\beta \mu$ is again the chemical potential and the formula (??) represents the "Bose-Einstein statistics".

## Remark : The ground state

In the limit $T \rightarrow 0, B E$ and FD statistics behaves differently.

## Remark : The ground state

In the limit $T \rightarrow 0, B E$ and FD statistics behaves differently.

- For BE statistics :

It is fine to have multiple particles in the same state, so to reach the lowest energy of the whole gas (at $T \rightarrow 0$ ), all the particles need to be placed in their lowest-lying state of energy $\epsilon_{1}$.

## Remark : The ground state

In the limit $T \rightarrow 0, B E$ and FD statistics behaves differently.

- For BE statistics :

It is fine to have multiple particles in the same state, so to reach the lowest energy of the whole gas (at $T \rightarrow 0$ ), all the particles need to be placed in their lowest-lying state of energy $\epsilon_{1}$.

- For FD statistics :

One particle per state. Then, in order to reach the lowest energy state of the whole gas, one need to populate all the single-particle states starting from the state of the lowest energy $\epsilon_{1}$ until all the particles are accommodated. The gas as a whole is in its state of lowest energy, but there are particles that have a very high energy compared to $\epsilon_{1}$.

## Remark : The classical limit of quantum statistics

As $\beta \rightarrow 0$ in FD and BE statistics, large energies $\epsilon_{r}$ contribute to the sum. To prevent this sum from exceeding $N, \alpha$ must become large enough to that each $\epsilon_{r}$ is sufficiently small. That is $e^{\alpha+\beta \epsilon_{r}} \gg 1$, then FD and BE statistics reduces to :

$$
\bar{n}_{r}=N \frac{e^{-\beta \epsilon_{r}}}{\sum_{r} e^{-\beta \epsilon_{r}}} .
$$

Then, in the classical limit BE and FD statistics reduces to MB statistics.

## Further readings

- Chapter 6, 7 and 9 of "F. Reif - Fundamentals of Statistical and Thermal Physics."
- Chapter 5, 6, 7 and 9 of "C. Ngo H. Ngo - Physique statistique".


## Next lecture is dedicated to exercises.

## Thank you for your attendance and your attention.

