ADVANCED STATISTICAL PHYSICS

Homework #2 - Phase Transitions and Critical Phenomena

Zakaria MZAOUALI

DUE: 29 April 2019

CRITICAL EXPONENTS

EXERCISE 1 -DEFINITION OF CRITICAL EXPONENTS- The critical exponent is a quantity defined as a limiting power law as $T \rightarrow T_c$. Take a function F(t) which shows a singularity at t = 0, that is :

$$F(t) = A|t|^{\lambda} \left[1 + at^{\lambda_1} + \dots\right] \text{ with } \lambda_1 > 0,$$

the critical exponent λ can be extracted by taking the limit :

$$\lambda = \lim_{t \to 0} \frac{\log |F(t)|}{\log |t|}$$

Determine the critical exponent λ of the following functions :

- 1. $F(t) = at + bt^{1/2} + ct^{1/4}$,
- 2. $F(t) = at^{-2/3} (t + b)^{2/3}$,
- 3. $F(t) = at^2 e^{-t}$,
- 4. $F(t) = at \log(|t|) + b$,

as $t \rightarrow 0$, where *a*, *b* and *c* are positive constants

EXERCISE 2 - MAGNETIC SYSTEMS- Consider an equation of state

$$H = aM(t + bM^2)$$
 for $a, b > 0$

Find the exponents β , γ and δ and verify the scaling relation among them.

MODELS & MEAN FIELD THEORY

EXERCISE 3- THE ISING MODEL- Consider a spin- $\frac{1}{2}$ Ising system on a two dimensional square lattice in presence of an external magnetic field H and nearest neighbor interaction J(> 0). (a) Consider a pair of nearest neighbor spins and (b) consider a four spin cluster in the effective field. Obtain the self-consistent equation for the magnetization associated with one of the spins in both the cases. Calculate T_c in these cases and compare with the mean field as well as with the exact results.