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course content

• Part I : Fundamental Concepts - 2Lec, 1Ex-
1. Start with what, why and how.
2. Quick review on statistical thermodynamics.
3. Crash course on statistical mechanics.

• Part II : Phase Transitions and Critical Phenomena. - 3Lec, 1Ex-
1. How phase transitions occur in principle ?
2. How phase transitions occur in practice ?
3. The Ising model.

• Part III : Quantum Phase Transitions. - 3Lec, 1Ex-
1. The condensed matter way of handling quantum phase
transitions.

2. Quantum phase transitions from a quantum information
perspective.
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course material

• Part I : Fundamental Concepts.
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course material

• Part II and III : Classical and Quantum phase transitions
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the pirate way !

If you are rich buy the books, if not get them from “Library Genesis” :
http://gen.lib.rus.ec/
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course material

PDFs of the lectures, exercise sheets and the course material can be
found in my personal homepage :
https://zmzaouali.weebly.com/courses
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online courses

Online courses on statistical mechanics :

• ICTP Statistical Mechanics - A. Schadicchio, M. Masili.
Youtube

• Statistical Mechanics - Leonard Susskind.
Theoretical Minimum
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https://www.youtube.com/playlist?list=PLaNkJORnlhZmxFxXEdHlBJbhX5sW0jVPU
http://theoreticalminimum.com/courses/statistical-mechanics/2013/spring


Part I : Fundamental Concepts
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scope & goals

• Understanding 1023 particle systems.

• A hard task because of the many interactions present in these
systems. It is impossible to keep track on many-body systems.

• One strategy is to compute the Schrodinger equation for 1023
particles. A hopeless strategy

• Another useful way is to look at the collective behavior using
basic physical laws.
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scope & goals

And that is the approach of
statistical physics.
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contents

1. Start with what, why and how.

2. A review on statistical thermodynamics
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start with what, why and how.



what

• Statistical physics is probability theory applied to physical
systems.

• The complexity of many-body systems is a double-edged sword.
It provide a way to fight back.

• Ask a gambler or an insurance agent about when probabilities
works ?
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why

• Statistical physics provides a deeper understanding of the
physical laws. Quantum mechanics was developed via statistical
arguments.

• We can reformulate Thermodynamics through statistical
mechanics.
“[A law] is more impressive the greater the simplicity of its

premises, the more different are the kinds of things it relates,
and the more extended its range of applicability. Therefore, the
deep impression which classical thermodynamics made on me.
It is the only physical theory of universal content, which I am

convinced, that within the framework of applicability of its basic
concepts will never be overthrown. ”Albert Einstein, quoted in
M.J. Klein, Thermodynamics in Einstein’s Universe, in Science, 157

(1967), p. 509.
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how

How statistical physics describes systems ? What are its tools ?

• A method for determining the state of the system, that is a
procedure for describing the outcome of the experiment.

• It uses probabilities over ensembles.
• Introduction of a priori postulates.
• Probability calculations.
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Specification of the state of the sys-
tem



specification of the state of the system

• Micro-state : a particular configuration a system take at some
instant.

• Example : the Hydrogen atom

The energy levels of the hydrogen atom are given by : ϵn = −−13.6
n2 eV

The micro-state is a particular configuration given by the ensemble
(n, l,m, s, sz), which describes the system completely at the

microscopic level.
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classical description : the notion of phase space

Sometimes it is okay to look for help in classical mechanics. Indeed,
specifying the position x and the momentum p gives a complete
description of systems in classical mechanics.

p

x

Figure 1: Phase space representation of a one dimensional particle. Each
couple of (x,p) is associated to a point in the phase space (i.e. the red
point). The time evolution of (x,p) is equivalent to the movement of the
point through the phase space.
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quantum description

In quantum mechanics, the wave function ψk(x1, . . . , xf) is the key
tool to describe the particles, where f is the number of degrees of
freedom.
Example :
The state of a system consisting of a particle having a spin s = 1

2 , can
be specified by the projection of the spin on the z-axis which can
take values of + 12 or -

1
2 . In other terms, we say that the particle

points either up or down.
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Statistical ensemble



statistical ensemble

• Our interest is not on a single system, but rather on an
ensemble o many identical systems.

• Our goals is then to predict the outcome of some event on the
basis of some postulate.

Example 1 : Flipping coins.
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statistical ensemble

Example 2 : 3 particles system
Consider three fixed particles each having a spin s = 1

2 and a
magnetic moment along the z-axis of µ when it points up and −µ
when it points down. The system interacts with an external magnetic
field H along the z-axis. The energy of a particle is −µH when it
points up and +µH when it points down. The state of ith particle can
be specified by the quantum number mi (the projection of the spin
on the z-axis), which can take two values mi = ± 1

2 . The state of the
whole system can be determined by knowing the values of m1,m2

and m3.
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statistical ensemble

Example 2 : 3 particles system
State index Quantum numbers Total magnetic Total

r m1,m2,m3 moment energy

1 + + + 3µ -3µH

2 + + - µ -µH
3 + - + µ -µH
4 - + + µ -µH

5 + - - −µ +µH
6 - + - −µ +µH
7 - - + −µ +µH

8 - - - −3µ +3µH
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Basic postulates



equiprobabilty postulate

“For an isolated system in
equilibrium, all accessible states

are equally likely.”
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ergodic hypothesis

“The mean over time of any
parameter is equal to the

average of this parameter taken
over an ensemble of systems.”
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Probability calculations



probability calculations

• Consider an isolated system at equilibrium. Its energy lies
between E and E+ δE.

• Let Ω(E) be the total number of state in this range.
• Suppose that among these states there is a certain number
Ω(E, yk) of states for which some parameter y (i.e. magnetic
field, pressure ) takes the value yk.

Using the equiprobability postulate, we can say the probability P(yk)
that the parameter y takes the value yk is :

P(yk) =
Ω(E, yk)
Ω(E)

We can also calculate the mean of this parameter by taking the
average over the system in the ensemble :

⟨y⟩ =
∑
k

P(yk)yk
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a review on statistical thermodynam-
ics



“The history of thermodynamics is a story of people and
concepts. The cast of characters is large. At least ten
scientists played major roles in creating thermodynamics,
and their work spanned more than a century. The list of
concepts, on the other hand, is surprisingly small; there are
just three leading concepts in thermodynamics: energy,
entropy, and absolute temperature.” William H. Cropper
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laws of classical thermodynamics

Zeroth Law :
If two systems A and B are in thermal equilibrium with a third system
C, then A and B are in thermal equilibrium with each other.

First Law :
An isolated system at equilibrium is characterized by a macro-state
which has a constant internal energy Ē =constant. If the system is
allowed to change macrostates (not isolated), the change in the
internal energy is given by :

∆Ē = −W+ Q,

where −W is the work done by the system and +Q is the heat
absorbed by the system.
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laws of classical thermodynamics

Second Law :
In any thermodynamic process, the total entropy “S” either increases
or remains constant, but never decreases.

Third Law :
The entropy “S” has a limiting property that : as T→ 0+, S→ S0.
Where S0 is a constant independent of all the parameters of the
system.
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thermodynamical quantities

Consider a closed system composed of two parts A and B, the
thermodynamical variables of the whole system (E, V,N), obeys the
following : V = V1 + V2, E = E1 + E2 and N = N1 + N2.

at constant N and E:
(
∂S1
∂V1

)
=

(
∂S2
∂V2

)
=
P
T ,

at constant V and N:
(
∂S1
∂E1

)
=

(
∂S2
∂E2

)
=
1
T ,

at constant E and V:
(
∂S1
∂N1

)
=

(
∂S2
∂N2

)
= −µT .
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thermodynamical quantities

heat capacity at constant volume : CV = T
(
∂S
∂T

)
V
,

heat capacity at constant pressure : CP = T
(
∂S
∂T

)
P
.

The internal energy is : dE = TdS− PdV = δQ+ δW,

34



thermodynamical quantities

heat capacity at constant volume : CV = T
(
∂S
∂T

)
V
,

heat capacity at constant pressure : CP = T
(
∂S
∂T

)
P
.

The internal energy is : dE = TdS− PdV = δQ+ δW,

34



thermodynamical quantities

heat capacity at constant volume : CV = T
(
∂S
∂T

)
V
,

heat capacity at constant pressure : CP = T
(
∂S
∂T

)
P
.

The internal energy is : dE = TdS− PdV = δQ+ δW,

34



thermodynamical quantities

The concept of “the enthalpy” and “the free energy” (which will be
central to the analysis of phase transitions later on), can be defined :

H = E+ PV = TS+
r∑
j=1

µjNj,

dH = TdS+ VdP+
r∑
j=1

µjNj

F = E− TS = −PV+
r∑
j=1

µjNj,

dF = −SdT− PdV+
r∑
j=1

µjNj
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Thermodynamics from statistical re-
lations



thermodynamics from statistical relations

Our starting point is the entropy, a concept that precedes the
temperature and even the energy. Consider a closed system of N
particles at equilibrium; if Ω(N, E, V) is the total number of
configurations, then the equiprobability postulate states that the
probability of finding the system in any of its accessible states is :

P =
1

Ω(N, E, V) .

Then :
S = kb lnΩ(N, E, V),

and :
β =

1
kbT

=
∂ lnΩ(N, E, V)

∂E
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thermodynamics from statistical relations

Example : Ideal gas

ΩIdeal gas(N, E, V) ∝ VNf(E),
then :

lnΩ = N ln V+ ln f(E) + constant,

Then, the pressure P can be calculated by taking the derivative with
respect to the volume V :

P =
N
βV =

N
V kbT.

This is the equation of state for an idea gas. The mean energy of an
ideal gas has an interesting property, which can obtained by noticing
:

β =
∂ ln f(Ē)
∂E .

Thus, it follows that, for an ideal gas β = β(Ē) or Ē = Ē(T). The mean
energy of an ideal gas depends solely on the temperature.
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Thank you for your attendance
and attention.
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