Advanced Statistical Physics

Part II : Phase Transitions and Critical Phenomena

Zakaria Mzaouali
22 April 2019
Mohammed V University.
Rabat, Morocco.

Readings

1. C.Ngo, H.Ngo - Physique Statistique - Chapter 10 \& 11.
2. Nigel Goldenfeld - Lectures On Phase Transitions And The Renormalization Group - Chapter 2, 3 \& 5.

Table of contents

1. Introduction
2. How Phase Transitions Occur in Principle
3. How Phase Transitions Occur in Practice
4. Landau Theory of Phase Transitions.

Introduction

What is a Phase? What is a phase transition ?

Figure 1: Phase diagram of water.

What is a Phase? What is a phase transition ?

Figure 2: Phase diagram of a ferromagnetic material.

What is a Phase ? What is a phase transition ?

How Phase Transitions Occur in Principle

Preliminaries : Convexity

$f(x)$ is a concave function of x if:

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \leq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2} \quad \text { for all } x_{1} \text { and } x_{2}
$$

Which means that the chord joining the points $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ lies above of $f(x)$ for all x in $x_{1}<x<x_{2}$.

Figure 3: Convex function.

Preliminaries : Concavity

$f(x)$ is a concave function of x if :

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \geq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2} \quad \text { for all } x_{1} \text { and } x_{2}
$$

That is the chord joining the points $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ lies below of $f(x)$ for all x in $x_{1}<x<x_{2}$.

Figure 4: Concave function

Consequences of the convexity and the concavity

The specific heat and the susceptibility (for magnetic materials) are positive thermodynamical response function, which implies that the free energy F is convex.

Consequences of the convexity and the concavity

The specific heat and the susceptibility (for magnetic materials) are positive thermodynamical response function, which implies that the free energy F is convex. This is a direct consequence of Le Chatelier's principle for stable equilibrium which states that: if a system is in thermal equilibrium any small spontaneous fluctuation in the system parameter, the system gives rise to certain processes that tends to restore the system back to equilibrium.

Preliminaries : Thermodynamic limit

The free energy $F_{\Omega}=-k_{b} T \log Z_{\Omega}$ and its derivatives encodes all the necessary information on the thermodynamics of the system Ω.

Preliminaries : Thermodynamic limit

The free energy $F_{\Omega}=-k_{b} T \log Z_{\Omega}$ and its derivatives encodes all the necessary information on the thermodynamics of the system Ω. When Ω is finite, there is no information about phase transitions or phases as this phenomena occurs theoretically in the thermodynamic limit that is $\Omega \rightarrow \infty$.

Preliminaries : Thermodynamic limit

The free energy $F_{\Omega}=-k_{b} T \log Z_{\Omega}$ and its derivatives encodes all the necessary information on the thermodynamics of the system Ω.
When Ω is finite, there is no information about phase transitions or phases as this phenomena occurs theoretically in the thermodynamic limit that is $\Omega \rightarrow \infty$.
The existence of the thermodynamic limit is not trivial as it fails to exist for some systems.

Preliminaries : Existence of the Thermodynamic limit

Consider a charged system at $T=0$ in 3 dimensions, the interaction between two particles separated by a distance r is given by Coulomb's law :

$$
U(r)=A / r,
$$

with A being a constant

Preliminaries : Existence of the Thermodynamic limit

Consider a charged system at $T=0$ in 3 dimensions, the interaction between two particles separated by a distance r is given by Coulomb's law :

$$
U(r)=A / r,
$$

with A being a constant. Then, the energy for a spherical system of radius R is :

$$
\begin{aligned}
E & =\int_{0}^{R}\left(\frac{4}{3} \pi r^{3} \rho\right) \frac{A}{r} 4 \pi r^{2} \rho d r \\
& =A \frac{(4 \pi)^{2}}{15} \rho^{2} R^{5} .
\end{aligned}
$$

The energy per unit volume is then : $\epsilon=A \frac{(4 \pi)^{2}}{15} \rho^{2} R^{2}$, which diverges as $R \rightarrow \infty$.

Preliminaries : Existence of the Thermodynamic limit

Consider a charged system at $T=0$ in 3 dimensions, the interaction between two particles separated by a distance r is given by Coulomb's law :

$$
U(r)=A / r,
$$

with A being a constant. Then, the energy for a spherical system of radius R is :

$$
\begin{aligned}
E & =\int_{0}^{R}\left(\frac{4}{3} \pi r^{3} \rho\right) \frac{A}{r} 4 \pi r^{2} \rho d r \\
& =A \frac{(4 \pi)^{2}}{15} \rho^{2} R^{5} .
\end{aligned}
$$

The energy per unit volume is then : $\epsilon=A \frac{(4 \pi)^{2}}{15} \rho^{2} R^{2}$, which diverges as $R \rightarrow \infty$.

Inverse square law forces like gravity and electrostatics are too long-ranged to permit thermodynamic behaviour

Preliminaries : Existence of the Thermodynamic limit

A more general case is where the interaction potential is of the form :

$$
U(r)=A / r^{m}
$$

Preliminaries : Existence of the Thermodynamic limit

A more general case is where the interaction potential is of the form :

$$
U(r)=A / r^{m}
$$

The energy per unit volume of a unit sphere in d-dimensions is :

$$
\epsilon \sim R^{d-m}
$$

Preliminaries : Existence of the Thermodynamic limit

A more general case is where the interaction potential is of the form :

$$
U(r)=A / r^{m}
$$

The energy per unit volume of a unit sphere in d-dimensions is :

$$
\epsilon \sim R^{d-m} .
$$

Taking the limit $R \rightarrow \infty$, the system is stable only when $m>d$. The thermodynamic limit exist then only when $m>d$.

Preliminaries : Phase boundaries and Phase transitions

Consider a finite system Ω, with a Hamiltonian :

$$
H_{\Omega}=-k_{b} T \sum_{n} K_{n} \theta_{n}
$$

Preliminaries : Phase boundaries and Phase transitions

Consider a finite system Ω, with a Hamiltonian :

$$
H_{\Omega}=-k_{b} T \sum_{n} K_{n} \theta_{n}
$$

The free energy is an extensive quantity, that is $F_{\Omega} \propto V(\Omega)$. Then, for finite systems we have :

$$
F_{\Omega}=V(\Omega) f_{b}+S(\Omega) f_{S}+O\left(L^{d-2}\right),
$$

Preliminaries : Phase boundaries and Phase transitions

Consider a finite system Ω, with a Hamiltonian :

$$
H_{\Omega}=-k_{b} T \sum_{n} K_{n} \theta_{n}
$$

The free energy is an extensive quantity, that is $F_{\Omega} \propto V(\Omega)$. Then, for finite systems we have :

$$
F_{\Omega}=V(\Omega) f_{b}+S(\Omega) f_{s}+O\left(L^{d-2}\right),
$$

Suppose we have D coupling constants, then the dimension of the phase diagram is $D . f_{b}[K]$ is analytic almost everywhere, the possible locations of non-analyticities of $f_{b}[K]$ are points, lines, planes and hyperplanes, etc, having a dimentionality D_{s}

Preliminaries : Phase boundaries and Phase transitions

Consider a finite system Ω, with a Hamiltonian :

$$
H_{\Omega}=-k_{b} T \sum_{n} K_{n} \theta_{n}
$$

The free energy is an extensive quantity, that is $F_{\Omega} \propto V(\Omega)$. Then, for finite systems we have :

$$
F_{\Omega}=V(\Omega) f_{b}+S(\Omega) f_{s}+O\left(L^{d-2}\right),
$$

Suppose we have D coupling constants, then the dimension of the phase diagram is $D . f_{b}[K]$ is analytic almost everywhere, the possible locations of non-analyticities of $f_{b}[K]$ are points, lines, planes and hyperplanes, etc, having a dimentionality D_{S}
Then, a phase is just a region of analycity of $f_{b}[K]$ and loci of co-dimension $C=D-D_{s}=1$ is called a phase boundary.

Preliminaries : Phase boundaries and Phase transitions

$f_{b}[K]$ can be used also to classify phase transitions :

- First order phase transitions

If one or more $\partial f_{b} / \partial K_{i}$ are discountinous across a phase boundary, the transition is first order.

- Continous phase transitions

If the first derivative of $f_{b}[K]$ is countinous across the phase boundary, the transition is said to be countinous phase transitions (or a second order phase transition)

The role model

The Ising model

The Ising model can be written as:

$$
\begin{equation*}
-H_{\Omega}=\sum_{i \in \Omega} H_{i} S_{i}+\sum_{i j} J_{i j} S_{i} S_{j} \sum_{i j k} K_{i j k} S_{i} S_{j} S_{k}+\ldots \tag{1}
\end{equation*}
$$

The Ising model

The Ising model can be written as:

$$
\begin{equation*}
-H_{\Omega}=\sum_{i \in \Omega} H_{i} S_{i}+\sum_{i j} J_{i j} S_{i} S_{j} \sum_{i j k} K_{i j k} S_{i} S_{j} S_{k}+\ldots \tag{1}
\end{equation*}
$$

We restrict ourselves only to two spins interactions, then we have :

$$
\begin{equation*}
-H_{\Omega}=\sum_{i \in \Omega} H_{i} S_{i}+\sum_{i j} l_{i j} S_{i} S_{j} . \tag{2}
\end{equation*}
$$

The Ising model

The Ising model can be written as:

$$
\begin{equation*}
-H_{\Omega}=\sum_{i \in \Omega} H_{i} S_{i}+\sum_{i j} s_{i j} S_{i} S_{j} \sum_{i j k} K_{i j k} S_{i} S_{j} S_{k}+\ldots \tag{1}
\end{equation*}
$$

We restrict ourselves only to two spins interactions, then we have :

$$
\begin{equation*}
-H_{\Omega}=\sum_{i \in \Omega} H_{i} S_{i}+\sum_{i j} l_{i j} S_{i} S_{j} . \tag{2}
\end{equation*}
$$

For the thermodynamic limit to exist in the Ising model, the following condition need to be satisfied:

$$
\sum_{j \neq i}\left|J_{i j}\right|<\infty
$$

The Ising model

The Ising model can be written as:

$$
\begin{equation*}
-H_{\Omega}=\sum_{i \in \Omega} H_{i} S_{i}+\sum_{i j} J_{i j} S_{i} S_{j} \sum_{i j k} K_{i j k} S_{i} S_{j} S_{k}+\ldots \tag{1}
\end{equation*}
$$

We restrict ourselves only to two spins interactions, then we have :

$$
\begin{equation*}
-H_{\Omega}=\sum_{i \in \Omega} H_{i} S_{i}+\sum_{i j} l_{i j} S_{i} S_{j} . \tag{2}
\end{equation*}
$$

For the thermodynamic limit to exist in the Ising model, the following condition need to be satisfied:

$$
\sum_{j \neq i}\left|S_{i j}\right|<\infty .
$$

The free energy is given by: $F_{\Omega}\left(T, H_{i}, J_{i j}\right)=-k_{b} T \log \operatorname{Tr} e^{-\beta H_{\Omega}}$.
The thermodynamical properties can be calculated through F_{Ω}, for example the magnetization at site i is :

$$
\frac{\partial F_{\Omega}}{\partial H_{i}}=-k_{B} T \frac{1}{\operatorname{Tr} e^{-\beta H_{\Omega}}} \operatorname{Tr} \frac{S_{i}}{k_{b} T} e^{-\beta H_{\Omega}}=-\left\langle S_{i}\right\rangle_{\Omega}
$$

The Ising model : Spin-reversal symmetry

The Ising model is Z_{2} symmetric. That is a rotation of π of all the spins, leave the system energy unchanged. Mathematically, this implies that:

$$
H_{\Omega}\left(H, J, S_{i}\right)=H_{\Omega}\left(-H, J,-S_{i}\right) .
$$

The Ising model : Spin-reversal symmetry

The Ising model is Z_{2} symmetric. That is a rotation of π of all the spins, leave the system energy unchanged. Mathematically, this implies that:

$$
H_{\Omega}\left(H, J, S_{i}\right)=H_{\Omega}\left(-H, J,-S_{i}\right) .
$$

Thus:

$$
\begin{aligned}
Z_{\Omega}(-H, J, T) & =\sum_{S_{i}= \pm 1} e^{-\beta H_{\Omega}\left(-H, J, S_{i}\right)} \\
& =\sum_{S_{i}= \pm 1} e^{-\beta H_{\Omega}\left(-H, J,-S_{i}\right)} \\
& =\sum_{S_{i}= \pm 1} e^{-\beta H_{\Omega}\left(H, J, S_{i}\right)} \\
& =Z_{\Omega}(H, J, T)
\end{aligned}
$$

The Ising model : Spin-reversal symmetry

The Ising model is Z_{2} symmetric. That is a rotation of π of all the spins, leave the system energy unchanged. Mathematically, this implies that:

$$
H_{\Omega}\left(H, J, S_{i}\right)=H_{\Omega}\left(-H, J,-S_{i}\right) .
$$

Thus:

$$
\begin{aligned}
Z_{\Omega}(-H, J, T) & =\sum_{S_{i}= \pm 1} e^{-\beta H_{\Omega}\left(-H, J, S_{i}\right)} \\
& =\sum_{S_{i}= \pm 1} e^{-\beta H_{\Omega}\left(-H, J,-S_{i}\right)} \\
& =\sum_{S_{i}= \pm 1} e^{-\beta H_{\Omega}\left(H, J, S_{i}\right)} \\
& =Z_{\Omega}(H, J, T)
\end{aligned}
$$

The free energy is then :

$$
F(H, J, T)=F(-H, J, T)
$$

The Ising model : Sub-lattice symmetry

This symmetry emerges at zero magnetic field $(H=0)$. We divide the lattice into two interpenetrating lattices A and B. The spins of lattice A interacts only with the ones in the lattice B

Figure 5: Two interpenetrating lattices A and B

The Ising model : Sub-lattice symmetry

The Hamiltonian is $H_{\Omega}\left(0, \jmath, S_{i}^{A}, S_{i}^{B}\right)=-\jmath \sum_{\langle i j\rangle} S_{i}^{A} S_{j}^{B}$.
The sub-lattice symmetry implies that :

$$
H_{\Omega}\left(0,-J, S_{i}^{A}, S_{i}^{B}\right)=H_{\Omega}\left(0, J,-S_{i}^{A}, S_{i}^{B}\right)=H_{\Omega}\left(0, J, S_{i}^{A},-S_{i}^{B}\right) .
$$

The Ising model : Sub-lattice symmetry

The Hamiltonian is $H_{\Omega}\left(0, \jmath, S_{i}^{A}, S_{i}^{B}\right)=-\jmath \sum_{\langle i j\rangle} S_{i}^{A} S_{j}^{B}$.
The sub-lattice symmetry implies that :

$$
H_{\Omega}\left(0,-J, S_{i}^{A}, S_{i}^{B}\right)=H_{\Omega}\left(0, J,-S_{i}^{A}, S_{i}^{B}\right)=H_{\Omega}\left(0, J, S_{i}^{A},-S_{i}^{B}\right) .
$$

In zero field we write the partition function:

$$
\begin{aligned}
Z_{\Omega}(0,-\jmath, T) & =\operatorname{Tr} e^{-\beta H_{\Omega}(0,-\jmath, T)} \\
& =\sum_{S_{i}^{A}} \sum_{S_{j}^{B}} e^{-\beta H_{\Omega}\left(0,-\jmath, S_{i}^{A}, S_{i}^{B}\right)} \\
& =\sum_{S_{i}^{A}} \sum_{S_{j}^{B}} e^{-\beta H_{\Omega}\left(0, \jmath,-S_{i}^{A}, S_{i}^{B}\right)} \\
& =\sum_{S_{i}^{A}} \sum_{S_{j}^{B}} e^{-\beta H_{\Omega}\left(0, J, S_{i}^{A}, S_{i}^{B}\right)} \\
& =Z_{\Omega}(0, \jmath, T)
\end{aligned}
$$

The Ising model : Sub-lattice symmetry

Thus, the free energy satisfies the following :

$$
F(0, J, T)=F(0,-J, T) .
$$

The Ising model : Sub-lattice symmetry

Thus, the free energy satisfies the following :

$$
F(0, J, T)=F(0,-J, T) .
$$

The sub-lattice symmetry implies that the thermodynamics of the ferromagnetic Ising model and that of the anti-ferromagnetic Ising model are the same at zero magnetic field.

The Ising model : Existence of Phase Transitions

The phase diagram is a guide map of the different phases a system or a model has. How de we build such a map ?

The Ising model : Existence of Phase Transitions

The phase diagram is a guide map of the different phases a system or a model has. How de we build such a map ? One strategy to construct the phase diagram is through the energy-entropy argument. We study the free energy at high and low temperatures and if the macroscopic states of the system obtained by the two limits are different, then we conclude that at least one phase transition has occurred at some temperature.

The Ising model : OT Phase diagram

Consider the Ising model in d-dimensions at $T=0$, then $\mathrm{F}=\mathrm{E}$.

The Ising model : OT Phase diagram

Consider the Ising model in d-dimensions at $T=0$, then $\mathrm{F}=\mathrm{E}$.
Suppose that we have available the energy configurations of our system.

Figure 6: The mechanism of level crossing

The Ising model : OT Phase diagram

The ground state is obtained for $\rho>0$ by noticing that $-J \sum_{\langle i j\rangle} S_{i} S_{j}$ is minimized when $S_{i}=S_{j}$ and the term $-H \sum S_{i}$ is minimized by $S_{i}=+1$ when $H>0$ and $S_{i}=-1$ when $H<0$.

The Ising model : OT Phase diagram

The ground state is obtained for $J>0$ by noticing that $-J \sum_{\langle i j\rangle} S_{i} S_{j}$ is
minimized when $S_{i}=S_{j}$ and the term $-H \sum S_{i}$ is minimized by
$S_{i}=+1$ when $H>0$ and $S_{i}=-1$ when $H<0 . S o$ that, for each spin S_{i} we can have the following configurations that minimize the energy of the system :

$$
S_{i}= \begin{cases}+1 & H>0, J>0 ; \\ -1 & H<0, J>0 .\end{cases}
$$

The magnetization is then :

$$
M_{\Omega}=\frac{1}{N(\Omega)} \sum_{i \in \Omega} S_{i}= \begin{cases}+1 & H>0 ; \\ -1 & H<0\end{cases}
$$

The Ising model : OT Phase diagram

The ground state is obtained for $J>0$ by noticing that $-J \sum_{\langle i j\rangle} S_{i} S_{j}$ is
minimized when $S_{i}=S_{j}$ and the term $-H \sum S_{i}$ is minimized by
$S_{i}=+1$ when $H>0$ and $S_{i}=-1$ when $H<0 . S o$ that, for each spin S_{i} we can have the following configurations that minimize the energy of the system :

$$
S_{i}= \begin{cases}+1 & H>0, J>0 ; \\ -1 & H<0, J>0 .\end{cases}
$$

The magnetization is then :

$$
M_{\Omega}=\frac{1}{N(\Omega)} \sum_{i \in \Omega} S_{i}= \begin{cases}+1 & H>0 \\ -1 & H<0\end{cases}
$$

A phase transition occurs at zero temperature and at zero magnetic field.

The Ising model : 1D phase diagram

Consider N spins pointing all up.

The Ising model : 1D phase diagram

Consider N spins pointing all up. Switching on the temperature has an effect of flipping some spins. Now, say one domain wall is introduced as shown below :

What effect does this have on the thermodynamics ?

The Ising model : 1D phase diagram

Consider N spins pointing all up. Switching on the temperature has an effect of flipping some spins. Now, say one domain wall is introduced as shown below :

What effect does this have on the thermodynamics ? $\Delta E=2 J$, while the domain wall introduced can be placed in N different positions, the entropy is then $\Delta S=k_{b} \ln N$. Therefore, the change in the free energy is :

$$
\Delta F=\Delta E-T \Delta S=2 J-k_{b} T \ln N .
$$

The Ising model : 1D phase diagram

Consider N spins pointing all up. Switching on the temperature has an effect of flipping some spins. Now, say one domain wall is introduced as shown below :

$\uparrow \uparrow \mid ~ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow ん \downarrow \downarrow+\downarrow \downarrow \downarrow \downarrow$

What effect does this have on the thermodynamics ? $\Delta E=2 J$, while the domain wall introduced can be placed in N different positions, the entropy is then $\Delta S=k_{b} \ln N$. Therefore, the change in the free energy is :

$$
\Delta F=\Delta E-T \Delta S=2 J-k_{b} T \ln N .
$$

For finite temperatures, $\Delta F \rightarrow-\infty$ as $N \rightarrow \infty$. The system is not stable.

The Ising model : 1D phase diagram

Consider N spins pointing all up. Switching on the temperature has an effect of flipping some spins. Now, say one domain wall is introduced as shown below :

What effect does this have on the thermodynamics ? $\Delta E=2 J$, while the domain wall introduced can be placed in N different positions, the entropy is then $\Delta S=k_{b} \ln N$. Therefore, the change in the free energy is :

$$
\Delta F=\Delta E-T \Delta S=2 J-k_{b} T \ln N .
$$

For finite temperatures, $\Delta F \rightarrow-\infty$ as $N \rightarrow \infty$. The system is not stable.

There is no long range order. Thus, the 1D Ising model has no phase transitions at $H=0$

The Ising model : 2D phase diagram

We consider again a domain of flipped spins, in a background of spins with long range order, but this time the domain in two dimensional. What is the energy difference ? and what is the entropy?

The Ising model : 2D phase diagram

We consider again a domain of flipped spins, in a background of spins with long range order, but this time the domain in two dimensional. What is the energy difference ? and what is the entropy?
The internal energy change of a domain of length L is $\Delta E=2 J L$. The entropy can be estimated by enumerating the different possibilities of the domain wall, it turns out that this number is proportional to the coordinate number of the lattice z. The entropy is then $\Delta S=k_{b} L \log (z-1)$ and the free energy is:

$$
\Delta F=2 J L-(\log (z-1)) k_{b} T L .
$$

The Ising model : 2D phase diagram

There may exist a critical temperature T_{c} above which the entropy term is dominate. Which means, creation of more domains and hence no long-range order can exist.

The Ising model : 2D phase diagram

There may exist a critical temperature T_{c} above which the entropy term is dominate. Which means, creation of more domains and hence no long-range order can exist. below T_{c} is where the term of the interaction of the spins is dominate. Which means, less domains and long-range order would be possible.

The Ising model : 2D phase diagram

There may exist a critical temperature T_{c} above which the entropy term is dominate. Which means, creation of more domains and hence no long-range order can exist. below T_{c} is where the term of the interaction of the spins is dominate. Which means, less domains and long-range order would be possible.

We can speak of phase transitions at finite temperatures only in the 2D Ising model or above

The impossibility theorem

The impossibility of phase transitions can be seen immediately from the spin-reversal symmetry of the Ising model. We know that the free energy satisfies the following :

$$
F_{\Omega}(H, J, T)=F_{\Omega}(-H, J, T),
$$

The impossibility theorem

The impossibility of phase transitions can be seen immediately from the spin-reversal symmetry of the Ising model. We know that the free energy satisfies the following :

$$
F_{\Omega}(H, J, T)=F_{\Omega}(-H, J, T),
$$

and the magnetization satisfies :

$$
N(\Omega) M_{\Omega}(H)=-\frac{\partial F_{\Omega}(H)}{\partial H}=-\frac{\partial F_{\Omega}(-H)}{\partial H}=\frac{\partial F_{\Omega}(-H)}{\partial-H}=-N(\Omega) M_{\Omega}(-H) .
$$

The impossibility theorem

The impossibility of phase transitions can be seen immediately from the spin-reversal symmetry of the Ising model. We know that the free energy satisfies the following :

$$
F_{\Omega}(H, J, T)=F_{\Omega}(-H, J, T),
$$

and the magnetization satisfies :

$$
N(\Omega) M_{\Omega}(H)=-\frac{\partial F_{\Omega}(H)}{\partial H}=-\frac{\partial F_{\Omega}(-H)}{\partial H}=\frac{\partial F_{\Omega}(-H)}{\partial-H}=-N(\Omega) M_{\Omega}(-H) .
$$

Then:

$$
M_{\Omega}(H)=-M_{\Omega}(-H),
$$

we are interested in the zero field case, thus:

$$
M_{\Omega}(0)=-M_{\Omega}(-0)=0 .
$$

The impossibility theorem

The impossibility of phase transitions can be seen immediately from the spin-reversal symmetry of the Ising model. We know that the free energy satisfies the following :

$$
F_{\Omega}(H, J, T)=F_{\Omega}(-H, J, T),
$$

and the magnetization satisfies :

$$
N(\Omega) M_{\Omega}(H)=-\frac{\partial F_{\Omega}(H)}{\partial H}=-\frac{\partial F_{\Omega}(-H)}{\partial H}=\frac{\partial F_{\Omega}(-H)}{\partial-H}=-N(\Omega) M_{\Omega}(-H) .
$$

Then :

$$
M_{\Omega}(H)=-M_{\Omega}(-H),
$$

we are interested in the zero field case, thus:

$$
M_{\Omega}(0)=-M_{\Omega}(-0)=0 .
$$

This is the impossibility theorem it shows that the magnetization in $H=0$ should be zero, a result that contradicts our previous finding.

Spontaneous Symmetry Breaking

When $N \rightarrow \infty$ the free energy develops a discontinuity in its first derivative, and knowing the fact that $F(H)$ is a convex function, the condition $F(H)=F(-H)$ does not imply $M(0)=0$, for that to happen we need to add the assumption of the smoothness of the free energy at $H=0$ and that the left and right derivatives are equal.

Spontaneous Symmetry Breaking

When $N \rightarrow \infty$ the free energy develops a discontinuity in its first derivative, and knowing the fact that $F(H)$ is a convex function, the condition $F(H)=F(-H)$ does not imply $M(0)=0$, for that to happen we need to add the assumption of the smoothness of the free energy at $H=0$ and that the left and right derivatives are equal. The smoothness of F follows if:

$$
F(H)=F(0)+O\left(H^{p}\right) \quad p>1
$$

and

$$
\lim _{\epsilon \rightarrow 0} \frac{F(+\epsilon)-F(0)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{F(-\epsilon)-F(0)}{\epsilon}=0
$$

Spontaneous Symmetry Breaking

When $N \rightarrow \infty$ the free energy develops a discontinuity in its first derivative, and knowing the fact that $F(H)$ is a convex function, the condition $F(H)=F(-H)$ does not imply $M(0)=0$, for that to happen we need to add the assumption of the smoothness of the free energy at $H=0$ and that the left and right derivatives are equal. The smoothness of F follows if:

$$
F(H)=F(0)+O\left(H^{p}\right) \quad p>1
$$

and

$$
\lim _{\epsilon \rightarrow 0} \frac{F(+\epsilon)-F(0)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{F(-\epsilon)-F(0)}{\epsilon}=0
$$

We can then turn around the impossibility theorem and still satisfy the analytical properties of the free energy by writing :

$$
F(H)=F(0)-M_{s}|H|+O\left(H^{p}\right) \quad p>1
$$

which is not differentiable at $H=0$, but still hold the convexity property as depicted Fig. 7

Spontaneous Symmetry Breaking

Figure 7: The free energy as function of H for a finite system (dashed line) and for an infinite system (solid line)

Spontaneous Symmetry Breaking

$$
\frac{\partial F}{\partial H}= \begin{cases}-M_{s}+O\left(H^{p-1}\right), & H>0 \\ -M_{s}+O\left(H^{p-1}\right), & H<0 .\end{cases}
$$

Spontaneous Symmetry Breaking

$$
\frac{\partial F}{\partial H}= \begin{cases}-M_{s}+O\left(H^{p-1}\right), & H>0 \\ -M_{S}+O\left(H^{p-1}\right), & H<0\end{cases}
$$

As $|H| \rightarrow 0$, we have :

$$
M=-\frac{\partial F}{\partial H}= \begin{cases}M_{s}, & H>0 \\ -M_{S}, & H<0\end{cases}
$$

Spontaneous Symmetry Breaking

$$
\frac{\partial F}{\partial H}= \begin{cases}-M_{s}+O\left(H^{p-1}\right), & H>0 \\ -M_{S}+O\left(H^{p-1}\right), & H<0\end{cases}
$$

As $|H| \rightarrow 0$, we have :

$$
M=-\frac{\partial F}{\partial H}= \begin{cases}M_{s}, & H>0 \\ -M_{S}, & H<0\end{cases}
$$

The spontaneous magnetization is given by:

$$
\pm M_{S}=\lim _{H \rightarrow 0^{ \pm}}-\frac{\partial F}{\partial H} .
$$

Spontaneous Symmetry Breaking

$$
\frac{\partial F}{\partial H}= \begin{cases}-M_{S}+O\left(H^{p-1}\right), & H>0 \\ -M_{S}+O\left(H^{p-1}\right), & H<0\end{cases}
$$

As $|H| \rightarrow 0$, we have :

$$
M=-\frac{\partial F}{\partial H}= \begin{cases}M_{S}, & H>0 \\ -M_{S}, & H<0\end{cases}
$$

The spontaneous magnetization is given by :

$$
\pm M_{S}=\lim _{H \rightarrow 0^{ \pm}}-\frac{\partial F}{\partial H} .
$$

Notice :

$$
\lim _{N(\Omega) \rightarrow \infty} \lim _{H \rightarrow 0} \frac{1}{N(\Omega)} \frac{\partial F_{\Omega}(H)}{\partial H}=0 \quad \text { and } \quad \lim _{H \rightarrow 0} \lim _{N(\Omega) \rightarrow \infty} \frac{1}{N(\Omega)} \frac{\partial F_{\Omega}(H)}{\partial H} \neq 0
$$

are not equal. Even tough the Hamiltonian is invariant under spin reversal, the expectation values do not follow this symmetry, so that $\left\langle S_{i}\right\rangle \neq 0$ and $: M=\lim _{N \rightarrow \infty} \frac{1}{N(\Omega)} \sum_{i}\left\langle S_{i}\right\rangle \neq 0$.

Spontaneous Symmetry Breaking

$$
\frac{\partial F}{\partial H}= \begin{cases}-M_{S}+O\left(H^{p-1}\right), & H>0 \\ -M_{S}+O\left(H^{p-1}\right), & H<0\end{cases}
$$

As $|H| \rightarrow 0$, we have :

$$
M=-\frac{\partial F}{\partial H}= \begin{cases}M_{S}, & H>0 \\ -M_{S}, & H<0\end{cases}
$$

The spontaneous magnetization is given by :

$$
\pm M_{S}=\lim _{H \rightarrow 0^{ \pm}}-\frac{\partial F}{\partial H} .
$$

Notice :

$$
\lim _{N(\Omega) \rightarrow \infty} \lim _{H \rightarrow 0} \frac{1}{N(\Omega)} \frac{\partial F_{\Omega}(H)}{\partial H}=0 \quad \text { and } \quad \lim _{H \rightarrow 0} \lim _{N(\Omega) \rightarrow \infty} \frac{1}{N(\Omega)} \frac{\partial F_{\Omega}(H)}{\partial H} \neq 0
$$

are not equal. Even tough the Hamiltonian is invariant under spin reversal, the expectation values do not follow this symmetry, so that $\left\langle S_{i}\right\rangle \neq 0$ and : $M=\lim _{N \rightarrow \infty} \frac{1}{N(\Omega)} \sum_{i}\left\langle S_{i}\right\rangle \neq 0$. These phenomena is what we call spontaneous symmetry breaking .

How Phase Transitions Occur in

Practice

Transfer Matrix

We start with the 1D nearest-neighbors Ising model.

$$
-H_{\Omega}=H \sum_{i \in \Omega} S_{i}+\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}, \quad \quad J>0 .
$$

Let $h=\beta H$ and $K=\beta J$, and suppose periodic boundary conditions, that is $S_{N+1}=S_{1}$.

Transfer Matrix

We start with the 1D nearest-neighbors Ising model.

$$
-H_{\Omega}=H \sum_{i \in \Omega} S_{i}+\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}, \quad \quad J>0 .
$$

Let $h=\beta H$ and $K=\beta J$, and suppose periodic boundary conditions, that is $S_{N+1}=S_{1}$. Then, the partition function is :

$$
\begin{aligned}
Z_{N}(h, K) & =\operatorname{Tr} \exp \left[h \sum_{i} S_{i}+K \sum_{i} S_{i} S_{i+1}\right] \\
& =\sum_{S_{1}} \cdots \sum_{S_{N}}\left[e^{\frac{h}{2}\left(S_{1}+S_{2}\right)+K S_{1} S_{2}}\right] \cdot\left[e^{\frac{h}{2}\left(S_{2}+S_{3}\right)+K S_{2} S_{3}}\right] \ldots\left[e^{\frac{h}{2}\left(S_{N}+S_{1}\right)+K S_{N} S_{1}}\right] .
\end{aligned}
$$

Transfer Matrix

We start with the 1D nearest-neighbors Ising model.

$$
-H_{\Omega}=H \sum_{i \in \Omega} S_{i}+\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}, \quad \quad J>0 .
$$

Let $h=\beta H$ and $K=\beta J$, and suppose periodic boundary conditions, that is $S_{N+1}=S_{1}$. Then, the partition function is :

$$
\begin{aligned}
Z_{N}(h, K) & =\operatorname{Tr} \exp \left[h \sum_{i} S_{i}+K \sum_{i} S_{i} S_{i+1}\right] \\
& =\sum_{S_{1}} \cdots \sum_{S_{N}}\left[e^{\frac{h}{2}\left(S_{1}+S_{2}\right)+K S_{1} S_{2}}\right] \cdot\left[e^{\frac{h}{2}\left(S_{2}+S_{3}\right)+K S_{2} S_{3}}\right] \ldots\left[e^{\frac{h}{2}\left(S_{N}+S_{1}\right)+K S_{N} S_{1}}\right] .
\end{aligned}
$$

Each term in the partition function can be written as a matrix T :

$$
T_{S_{1} S_{2}}=e^{\frac{n}{2}\left(S_{1}+S_{2}\right)+K S_{1} S_{2}},
$$

whose elements are:

$$
T=\left(\begin{array}{cc}
T_{1,1} & T_{1,-1} \tag{3}\\
T_{-1,1} & T_{-1,-1 \cdot}
\end{array}\right)=\left(\begin{array}{cc}
e^{h+K} & e^{-K} \\
e^{-K} & e^{-h+K},
\end{array}\right)
$$

Transfer Matrix

the partition function can be re-written in terms of the matrix T as :

$$
Z_{N}(h, K)=\sum_{S_{1}} \cdots \sum_{S_{N}} T_{S_{1} S_{2}} T_{S_{2} S_{3}} \ldots T_{S_{N} S_{1}} .
$$

Transfer Matrix

the partition function can be re-written in terms of the matrix T as :

$$
Z_{N}(h, K)=\sum_{S_{1}} \cdots \sum_{S_{N}} T_{S_{1} S_{2}} T_{S_{2} S_{3}} \ldots T_{S_{N} S_{1}} .
$$

Thus:

$$
Z_{N}(h, K)=\operatorname{Tr}\left(T^{N}\right),
$$

Transfer Matrix

the partition function can be re-written in terms of the matrix T as :

$$
Z_{N}(h, K)=\sum_{S_{1}} \cdots \sum_{S_{N}} T_{S_{1} S_{2}} T_{S_{2} S_{3}} \ldots T_{S_{N} S_{1}}
$$

Thus:

$$
Z_{N}(h, K)=\operatorname{Tr}\left(T^{N}\right),
$$

since T is real and symmetric, we diagonalize it by writing :

$$
T^{\prime}=S^{-1} T S,
$$

where S is a matrix whose rows and columns are eigenvectors of T. Then :

$$
T^{\prime}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

where λ_{1} and λ_{2} are the eigenvalues of T. The cyclic property of the trace operation implies that $\operatorname{Tr}\left(T^{\prime}\right)=\operatorname{Tr}(T)$, so that :

$$
\operatorname{Tr}\left(T^{N}\right)=\lambda_{1}^{N}+\lambda_{2}^{N} .
$$

Transfer Matrix

Assuming that $\lambda_{1}>\lambda_{2}$, we have :

$$
Z_{N}(h, K)=\lambda_{1}^{N}\left(1+\left[\frac{\lambda_{2}}{\lambda_{1}}\right]^{N}\right)
$$

and taking the thermodynamic limit $N \rightarrow \infty$, we get :

$$
Z_{N}(h, K) \approx \lambda_{1}^{N}\left(1+O\left(e^{-\alpha N}\right)\right)
$$

where $\alpha=\log \left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is a positive constant.

Transfer Matrix

Assuming that $\lambda_{1}>\lambda_{2}$, we have :

$$
Z_{N}(h, K)=\lambda_{1}^{N}\left(1+\left[\frac{\lambda_{2}}{\lambda_{1}}\right]^{N}\right)
$$

and taking the thermodynamic limit $N \rightarrow \infty$, we get:

$$
Z_{N}(h, K) \approx \lambda_{1}^{N}\left(1+O\left(e^{-\alpha N}\right)\right),
$$

where $\alpha=\log \left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is a positive constant. When $N \rightarrow \infty$ only the largest eigenvalue of the transfer matrix is relevant. Then, the free energy is: $\lim _{N \rightarrow \infty} \frac{F_{N}(h, K, T)}{N}=-k_{B} T \log \left(\lambda_{1}\right)$.
Solving Eq. 3, we obtain : $\lambda_{1,2}=e^{k}\left[\cosh h \pm \sqrt{\sinh ^{2} h+e^{-4 k}}\right]$.

Transfer Matrix

Assuming that $\lambda_{1}>\lambda_{2}$, we have :

$$
Z_{N}(h, K)=\lambda_{1}^{N}\left(1+\left[\frac{\lambda_{2}}{\lambda_{1}}\right]^{N}\right)
$$

and taking the thermodynamic limit $N \rightarrow \infty$, we get:

$$
Z_{N}(h, K) \approx \lambda_{1}^{N}\left(1+O\left(e^{-\alpha N}\right)\right),
$$

where $\alpha=\log \left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is a positive constant. When $N \rightarrow \infty$ only the largest eigenvalue of the transfer matrix is relevant. Then, the free energy is: $\lim _{N \rightarrow \infty} \frac{F_{N}(h, K, T)}{N}=-k_{B} T \log \left(\lambda_{1}\right)$.
Solving Eq. 3, we obtain : $\lambda_{1,2}=e^{k}\left[\cosh h \pm \sqrt{\sinh ^{2} h+e^{-4 k}}\right]$.
The free energy of the one dimensional Ising model in an external magnetic field is :

$$
\begin{equation*}
\frac{F_{N}(h, K, T)}{N}=-J-k_{B} T \log \left[\cosh h+\sqrt{\sinh ^{2}+e^{-4 K}}\right] \tag{4}
\end{equation*}
$$

Perron's Theorem

Theorem

For an $N \times N$ matrix $(N<\infty) A$, with positive entries $A_{i j}$ for all (i, j), the largest eigenvalue satisfies the following :

1. real and positive
2. non-degenerate
3. an analytic function of $A_{i j}$

Perron's Theorem

Theorem

For an $N \times N$ matrix $(N<\infty) A$, with positive entries $A_{i j}$ for all (i, j), the largest eigenvalue satisfies the following :

1. real and positive
2. non-degenerate
3. an analytic function of $A_{i j}$

Inspecting Eq. 4 leads to the conclusion that to have non-zero temperature phase transitions, λ_{1} should be either non-analytic, degenerate ($\lambda_{1}=\lambda_{2}$), or $\lambda_{1}=0$. On the other side, the transfer matrix for 1D systems with sufficiently short-ranged interactions satisfy the Perron's theorem, that is $\lambda_{1} \neq 0, \lambda_{1} \neq \lambda_{2}$ and λ_{1} in analytic. Thus, we immediately conclude that there are no finite temperature phase transitions in the 1D Ising model.

Transfer Matrix : OT Ising model

At $T=0(K \rightarrow \infty): \lambda_{1}=e^{K}\left[\cosh h+\sqrt{\sinh ^{2} h}\left(1+O\left(e^{-4 K}\right)\right)\right]=e^{K+|h|}$.
Then, the free energy and the magnetization are given by:
$F=-N k_{B} T(K+|h|)+O\left(T^{2}\right)=-N(J+|H|), \quad M=-\frac{1}{N} \frac{\partial F}{\partial H}= \begin{cases}1 & H>0 ; \\ -1 & H<0,\end{cases}$

Transfer Matrix : OT Ising model

At $T=0(K \rightarrow \infty): \lambda_{1}=e^{K}\left[\cosh h+\sqrt{\sinh ^{2} h}\left(1+O\left(e^{-4 K}\right)\right)\right]=e^{K+|h|}$.
Then, the free energy and the magnetization are given by :
$F=-N k_{B} T(K+|h|)+O\left(T^{2}\right)=-N(J+|H|), \quad M=-\frac{1}{N} \frac{\partial F}{\partial H}= \begin{cases}1 & H>0 ; \\ -1 & H<0,\end{cases}$

Figure 8: Magnetization vs the magnetic field. Blue line correspond to $T=0$, while the orange line is for a non-zero temperature.

Thermodynamics

We switch off the magnetic field to calculate the specific heat C_{V} and the magnetic susceptibility χ_{T}.

Thermodynamics

We switch off the magnetic field to calculate the specific heat C_{V} and the magnetic susceptibility χ_{T}. Then : $\lambda_{1}=e^{K}\left(1+e^{-2 K}\right)=2 \cosh K$.

Thermodynamics

We switch off the magnetic field to calculate the specific heat C_{V} and the magnetic susceptibility χ_{T}. Then : $\lambda_{1}=e^{K}\left(1+e^{-2 K}\right)=2 \cosh K$. The partition function is $Z=(2 \cosh K)^{N}$ as $N \rightarrow \infty$ and the free energy is: $F=-k_{B}$ TN $\left[K+\log \left(1+e^{-2 K}\right)\right]$, with limits:

$$
F / N= \begin{cases}-\jmath & T \rightarrow 0(K \rightarrow \infty) ; \\ -k_{B} T \log 2 & T \rightarrow \infty(K \rightarrow 0) .\end{cases}
$$

Thermodynamics

We switch off the magnetic field to calculate the specific heat C_{V} and the magnetic susceptibility χ_{T}. Then: $\lambda_{1}=e^{K}\left(1+e^{-2 K}\right)=2 \cosh K$. The partition function is $Z=(2 \cosh K)^{N}$ as $N \rightarrow \infty$ and the free energy is : $F=-k_{B}$ TN $\left[K+\log \left(1+e^{-2 K}\right)\right]$, with limits:

$$
F / N= \begin{cases}-\jmath & T \rightarrow 0(K \rightarrow \infty) \\ -k_{B} T \log 2 & T \rightarrow \infty(K \rightarrow 0) .\end{cases}
$$

The specific heat is :

$$
C_{V}=\frac{\partial E}{\partial T}=-\frac{1}{k_{B} T^{2}} \frac{\partial E}{\partial \beta}=\frac{1}{k_{B} T^{2}} \frac{\partial^{2} Z}{\partial \beta^{2}}=\frac{N \rho^{2}}{k_{B} T^{2}} \operatorname{sech}^{2}\left(\frac{1}{k_{B} T}\right) .
$$

Thermodynamics

We switch off the magnetic field to calculate the specific heat C_{V} and the magnetic susceptibility χ_{T}. Then: $\lambda_{1}=e^{K}\left(1+e^{-2 K}\right)=2 \cosh K$.
The partition function is $Z=(2 \cosh K)^{N}$ as $N \rightarrow \infty$ and the free energy is: $F=-k_{B} T N\left[K+\log \left(1+e^{-2 K}\right)\right]$, with limits :

$$
F / N= \begin{cases}-\jmath & T \rightarrow 0(K \rightarrow \infty) \\ -k_{B} T \log 2 & T \rightarrow \infty(K \rightarrow 0) .\end{cases}
$$

The specific heat is :

$$
C_{V}=\frac{\partial E}{\partial T}=-\frac{1}{k_{B} T^{2}} \frac{\partial E}{\partial \beta}=\frac{1}{k_{B} T^{2}} \frac{\partial^{2} Z}{\partial \beta^{2}}=\frac{N J^{2}}{k_{B} T^{2}} \operatorname{sech}^{2}\left(\frac{1}{k_{B} T}\right) .
$$

The heat capacity does not show any singularity, however it exhibit a peak at I $\sim k_{B} T$, a phenomena known as Schottky anomaly

Thermodynamics

The magnetic susceptibility is : $\chi=\frac{\partial M}{\partial H}=\beta \frac{\partial M}{\partial h}=\beta \frac{\partial}{\partial h}\left(\frac{\sinh h}{\sqrt{\sinh ^{2} h+e^{-4 K}}}\right)$

Thermodynamics

The magnetic susceptibility is : $\chi=\frac{\partial M}{\partial H}=\beta \frac{\partial M}{\partial h}=\beta \frac{\partial}{\partial h}\left(\frac{\sinh h}{\sqrt{\sinh ^{2} h+e^{-4 K}}}\right)$ for small field ($h \rightarrow 0$), it reduces to:

$$
\chi \sim \begin{cases}\frac{1}{k_{b} T}, & T \rightarrow \infty(\text { Curie's law }) ; \\ \frac{e^{\frac{2}{B^{\prime} T}}}{k_{b} T}, & T \rightarrow 0\end{cases}
$$

Figure 9: Magnetic susceptibility vs temperature at zero magnetic field.

Correlation functions

In statistical mechanics, a correlation functions is a measure of order in a system, more concretely they describe how microscopic variables, such as spin and density, co-vary with one another across space and time.

Correlation functions

In statistical mechanics, a correlation functions is a measure of order in a system, more concretely they describe how microscopic variables, such as spin and density, co-vary with one another across space and time.
The two point correlation function is defined as:
$G(i, j)=\left\langle S_{i} S_{j}\right\rangle-\left\langle S_{i}\right\rangle\left\langle S_{j}\right\rangle=\left\langle S_{i} S_{j}\right\rangle, \quad\left(\right.$ For $T>0$ and $\left.h=0:\left\langle S_{i}\right\rangle=\left\langle S_{j}\right\rangle=0\right)$.

Correlation functions

In statistical mechanics, a correlation functions is a measure of order in a system, more concretely they describe how microscopic variables, such as spin and density, co-vary with one another across space and time.
The two point correlation function is defined as:
$G(i, j)=\left\langle S_{i} S_{j}\right\rangle-\left\langle S_{i}\right\rangle\left\langle S_{j}\right\rangle=\left\langle S_{i} S_{j}\right\rangle, \quad\left(\right.$ For $T>0$ and $\left.h=0:\left\langle S_{i}\right\rangle=\left\langle S_{j}\right\rangle=0\right)$.
A spin at site i is only sensitive to its first neighbor, then :

$$
G(i, j)=\left\langle S_{i} S_{i+1}\right\rangle\left\langle S_{i+1} S_{i+2}\right\rangle\left\langle S_{i+2} S_{i+3}\right\rangle \ldots\left\langle S_{N-1} S_{N}\right\rangle .
$$

Correlation functions

In statistical mechanics, a correlation functions is a measure of order in a system, more concretely they describe how microscopic variables, such as spin and density, co-vary with one another across space and time.
The two point correlation function is defined as:
$G(i, j)=\left\langle S_{i} S_{j}\right\rangle-\left\langle S_{i}\right\rangle\left\langle S_{j}\right\rangle=\left\langle S_{i} S_{j}\right\rangle, \quad\left(\right.$ For $T>0$ and $\left.h=0:\left\langle S_{i}\right\rangle=\left\langle S_{j}\right\rangle=0\right)$.
A spin at site i is only sensitive to its first neighbor, then :

$$
G(i, j)=\left\langle S_{i} S_{i+1}\right\rangle\left\langle S_{i+1} S_{i+2}\right\rangle\left\langle S_{i+2} S_{i+3}\right\rangle \ldots\left\langle S_{N-1} S_{N}\right\rangle .
$$

Then :

$$
\left\langle S_{i} S_{i+1}\right\rangle=\frac{1}{Z} \sum_{\{S\}} S_{i} S_{i+1} e^{K S_{i} S_{i+1}}=\frac{\partial \log Z}{\partial K}
$$

Correlation functions

The partition function $z_{i, i+1}$ is :

$$
Z=\sum_{S_{i}= \pm 1} e^{K S_{i} S_{i+1}}=2\left(e^{K}+e^{-K}\right)=2^{2} \cosh (K)
$$

Correlation functions

The partition function $z_{i, i+1}$ is :

$$
Z=\sum_{S_{i}= \pm 1} e^{K S_{i} S_{i+1}}=2\left(e^{K}+e^{-K}\right)=2^{2} \cosh (K) .
$$

Then :

$$
\left\langle S_{i} S_{i+1}\right\rangle=\tanh (K)=\tanh (\beta J) .
$$

Figure 10: Nearest neighbours correlation function vs temperature. For high temperatures ($K \rightarrow 0$) the two spins are less correlated, while for low temperatures $(K \rightarrow \infty)$ the spins are highly correlated

Correlation functions

It is straightforward to generalize the result beyond $(i, i+1)$:

$$
\begin{aligned}
G(i, i+j) & =\left\langle S_{i} S_{i+j}\right\rangle \\
& =\tanh \left(K_{i}\right) \tanh \left(K_{i+1}\right) \ldots \tanh \left(K_{i+j-1}\right) \\
& =(\tanh (K))^{j},
\end{aligned}
$$

Correlation functions

It is straightforward to generalize the result beyond $(i, i+1)$:

$$
\begin{aligned}
G(i, i+j) & =\left\langle S_{i} S_{i+j}\right\rangle \\
& =\tanh \left(K_{i}\right) \tanh \left(K_{i+1}\right) \ldots \tanh \left(K_{i+j-1}\right) \\
& =(\tanh (K))^{j},
\end{aligned}
$$

An expected result, due to the translation symmetry of the system.
We say that $G(i, i+j)$ depends only on the distance between the spins " j ". That is, the correlation function satisfies $G\left(i, i^{\prime}\right)=G\left(i-i^{\prime}\right)$.

Correlation functions

It is straightforward to generalize the result beyond $(i, i+1)$:

$$
\begin{aligned}
G(i, i+j) & =\left\langle S_{i} S_{i+j}\right\rangle \\
& =\tanh \left(K_{i}\right) \tanh \left(K_{i+1}\right) \ldots \tanh \left(K_{i+j-1}\right) \\
& =(\tanh (K))^{j},
\end{aligned}
$$

An expected result, due to the translation symmetry of the system. We say that $G(i, i+j)$ depends only on the distance between the spins " j ". That is, the correlation function satisfies $G\left(i, i^{\prime}\right)=G\left(i-i^{\prime}\right)$. Long-range order is manifested at $T=0$, that is $G(i, i+j)=1$. Switching on the temperature reduces the magnitude of $G(i, i+j)$ and it decays exponentially as :

$$
G(i, i+j)=e^{-j \log (\operatorname{coth} K)}=e^{-j / \xi}
$$

Correlation functions

It is straightforward to generalize the result beyond $(i, i+1)$:

$$
\begin{aligned}
G(i, i+j) & =\left\langle S_{i} S_{i+j}\right\rangle \\
& =\tanh \left(K_{i}\right) \tanh \left(K_{i+1}\right) \ldots \tanh \left(K_{i+j-1}\right) \\
& =(\tanh (K))^{j},
\end{aligned}
$$

An expected result, due to the translation symmetry of the system.
We say that $G(i, i+j)$ depends only on the distance between the spins " j ". That is, the correlation function satisfies $G\left(i, i^{\prime}\right)=G\left(i-i^{\prime}\right)$. Long-range order is manifested at $T=0$, that is $G(i, i+j)=1$. Switching on the temperature reduces the magnitude of $G(i, i+j)$ and it decays exponentially as :

$$
G(i, i+j)=e^{-j \log (\operatorname{coth} \kappa)}=e^{-j / \xi},
$$

where $\xi=\frac{1}{\log (\operatorname{coth} K)}$ is called : the correlation length

Correlation functions

The correlation length measures the length over which the spins are correlated. As we approach the transition temperature of the 1D Ising model ($T \rightarrow 0$), the correlation length diverges to infinity (ξ diverges exponentially fast), while it approaches zero at high temperatures.

Correlation functions

The correlation length measures the length over which the spins are correlated. As we approach the transition temperature of the 1D Ising model ($T \rightarrow 0$), the correlation length diverges to infinity (ξ diverges exponentially fast), while it approaches zero at high temperatures. Notice that : $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)_{h=0}=\frac{e^{K}+e^{-K}}{e^{K}-e^{-K}}=\operatorname{coth}(K)$,

Correlation functions

The correlation length measures the length over which the spins are correlated. As we approach the transition temperature of the 1D Ising model ($T \rightarrow 0$), the correlation length diverges to infinity (ξ diverges exponentially fast), while it approaches zero at high temperatures. Notice that: $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)_{h=0}=\frac{e^{K}+e^{-K}}{e^{\kappa}-e^{-K}}=\operatorname{coth}(K)$, on the other hand: $\xi^{-1}=\log (\operatorname{coth} K)$.

Correlation functions

The correlation length measures the length over which the spins are correlated. As we approach the transition temperature of the 1D Ising model ($T \rightarrow 0$), the correlation length diverges to infinity (ξ diverges exponentially fast), while it approaches zero at high temperatures. Notice that: $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)_{h=0}=\frac{e^{K}+e^{-K}}{e^{K}-e^{-K}}=\operatorname{coth}(K)$,
on the other hand: $\xi^{-1}=\log (\operatorname{coth} K)$. Then, we prove a general result relating the eigenvalues of the transfer matrix and the correlation length :

$$
\begin{equation*}
\xi^{-1}=\log \left(\frac{\lambda_{1}}{\lambda_{2}}\right) . \tag{5}
\end{equation*}
$$

Correlation functions

The correlation length measures the length over which the spins are correlated. As we approach the transition temperature of the 1D Ising model ($T \rightarrow 0$), the correlation length diverges to infinity (ξ diverges exponentially fast), while it approaches zero at high temperatures. Notice that: $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)_{h=0}=\frac{e^{K}+e^{-K}}{e^{e^{-}}-e^{-K}}=\operatorname{coth}(K)$,
on the other hand: $\xi^{-1}=\log (\operatorname{coth} K)$. Then, we prove a general result relating the eigenvalues of the transfer matrix and the correlation length :

$$
\begin{equation*}
\xi^{-1}=\log \left(\frac{\lambda_{1}}{\lambda_{2}}\right) . \tag{5}
\end{equation*}
$$

A clear indication of a phase transition is a divergence in the correlation length, for that to happen we need $\lambda_{1}=\lambda_{2}$ (the largest eigenvalue need to be degenerate). This is a general result.

Weiss' Mean Field Theory

Mean field theory :

1. Goal ? : treating interacting statistical mechanical systems
2. Idea ? : for a system of N particles, we replace the interaction between the particles by a mean potential and we forget about fluctuations.
3. Effectiveness ?: when the fluctuation are weak, which not the case around the critical region

Weiss' Mean Field Theory

The Ising model: $H_{\Omega}=-\jmath \sum_{\langle i j\rangle} S_{i} S_{j}-H \sum_{i} S_{i}$.

Weiss' Mean Field Theory

The Ising model: $H_{\Omega}=-\jmath \sum_{\langle i j\rangle} S_{i} S_{j}-H \sum_{i} S_{i}$.
Take $J=0$, a paramagnet.

Weiss' Mean Field Theory

The Ising model: $H_{\Omega}=-J \sum_{\langle i j\rangle} S_{i} S_{j}-H \sum_{i} S_{i}$.
Take $J=0$, a paramagnet. The partition function for such a system is :

$$
Z_{\Omega}(0, H)=\left[2 \cosh \left(\frac{H}{k_{B} T}\right)\right]^{N}
$$

the magnetization is :

$$
M=-\frac{1}{N} \frac{\partial F}{\partial H}=\tanh \left(\frac{H}{R_{B} T}\right) .
$$

Weiss' Mean Field Theory

The Ising model: $H_{\Omega}=-J \sum_{\langle i j\rangle} S_{i} S_{j}-H \sum_{i} S_{i}$.
Take $J=0$, a paramagnet. The partition function for such a system is :

$$
Z_{\Omega}(0, H)=\left[2 \cosh \left(\frac{H}{k_{B} T}\right)\right]^{N},
$$

the magnetization is :

$$
M=-\frac{1}{N} \frac{\partial F}{\partial H}=\tanh \left(\frac{H}{R_{B} T}\right) .
$$

In this approach, the Ising model can be written as: $H_{\Omega}=-\sum_{i} S_{i} H_{i}$, where

$$
H_{i}=\underbrace{H}_{\text {magnetic field }}+\underbrace{\sum_{j} J_{i j}\left\langle S_{j}\right\rangle}_{\text {the mean field }}+\underbrace{\sum_{j} J_{i j}\left(S_{j}-\left\langle S_{j}\right\rangle\right)}_{\text {the fluctuations }}
$$

Weiss' Mean Field Theory

The Ising model: $H_{\Omega}=-J \sum_{\langle i j\rangle} S_{i} S_{j}-H \sum_{i} S_{i}$.
Take $J=0$, a paramagnet. The partition function for such a system is :

$$
Z_{\Omega}(0, H)=\left[2 \cosh \left(\frac{H}{k_{B} T}\right)\right]^{N},
$$

the magnetization is :

$$
M=-\frac{1}{N} \frac{\partial F}{\partial H}=\tanh \left(\frac{H}{R_{B} T}\right) .
$$

In this approach, the Ising model can be written as: $H_{\Omega}=-\sum_{i} S_{i} H_{i}$, where

$$
H_{i}=\underbrace{H}_{\text {magnetic field }}+\underbrace{\sum_{j} J_{i j}\left\langle S_{j}\right\rangle}_{\text {the mean field }}+\underbrace{\sum_{j} J_{i j}\left(S_{j}-\left\langle S_{j}\right\rangle\right)}_{\text {the fluctuations }} .
$$

for a d-dimensional hypercubic lattice we have : $H_{i}=H+2 d J m$,

Weiss' Mean Field Theory: Critical exponents

Then, the magnetization is :

$$
M=\tanh \left(\frac{H+2 d J m}{k_{B} T}\right),
$$

when $H=0$, the critical temperature is : $T_{C}=2 d J / k_{B}$.

Weiss' Mean Field Theory: Critical exponents

Then, the magnetization is :

$$
M=\tanh \left(\frac{H+2 d J m}{k_{B} T}\right)
$$

when $H=0$, the critical temperature is: $T_{C}=2 d J / k_{B}$. The equation of state can be obtained by putting $\tau=T_{c} / T$ and we find:

$$
M=\tanh \left(\frac{H}{R_{B} T}+m \tau\right)=\frac{\tanh \left(\frac{H}{R_{B} T}\right)+\tanh m \tau}{1+\tanh \left(\frac{H}{R_{B} T}\right) \tanh m \tau},
$$

Weiss' Mean Field Theory: Critical exponents

Then, the magnetization is :

$$
M=\tanh \left(\frac{H+2 d J m}{k_{B} T}\right),
$$

when $H=0$, the critical temperature is: $T_{C}=2 d J / k_{B}$. The equation of state can be obtained by putting $\tau=T_{c} / T$ and we find:

$$
M=\tanh \left(\frac{H}{R_{B} T}+m \tau\right)=\frac{\tanh \left(\frac{H}{R_{B} T}\right)+\tanh m \tau}{1+\tanh \left(\frac{H}{R_{B} T}\right) \tanh m \tau},
$$

then :

$$
\begin{equation*}
\tanh \left(\frac{H}{R_{B} T}\right)=\frac{M-\tanh m \tau}{1-M \tanh m \tau}, \tag{6}
\end{equation*}
$$

Weiss' Mean Field Theory: Critical exponents

Then, the magnetization is :

$$
M=\tanh \left(\frac{H+2 d J m}{k_{B} T}\right),
$$

when $H=0$, the critical temperature is: $T_{C}=2 d J / k_{B}$. The equation of state can be obtained by putting $\tau=T_{c} / T$ and we find:

$$
M=\tanh \left(\frac{H}{R_{B} T}+m \tau\right)=\frac{\tanh \left(\frac{H}{R_{B} T}\right)+\tanh m \tau}{1+\tanh \left(\frac{H}{R_{B} T}\right) \tanh m \tau},
$$

then :

$$
\begin{equation*}
\tanh \left(\frac{H}{k_{B} T}\right)=\frac{M-\tanh m \tau}{1-M \tanh m \tau}, \tag{6}
\end{equation*}
$$

for weak H and small m, we can expand Eq. 6 as :

$$
\begin{equation*}
\frac{H}{k_{B} T} \approx M(1-\tau)+M^{3}\left(\tau-\tau^{2}+\frac{\tau^{3}}{3}+\ldots\right)+\ldots \tag{7}
\end{equation*}
$$

Weiss' Mean Field Theory: Critical exponents

Then, the magnetization is :

$$
M=\tanh \left(\frac{H+2 d J m}{k_{B} T}\right),
$$

when $H=0$, the critical temperature is : $T_{C}=2 d J / k_{B}$. The equation of state can be obtained by putting $\tau=T_{C} / T$ and we find:

$$
M=\tanh \left(\frac{H}{R_{B} T}+m \tau\right)=\frac{\tanh \left(\frac{H}{R_{B} T}\right)+\tanh m \tau}{1+\tanh \left(\frac{H}{R_{B} T}\right) \tanh m \tau},
$$

then :

$$
\begin{equation*}
\tanh \left(\frac{H}{k_{B} T}\right)=\frac{M-\tanh m \tau}{1-M \tanh m \tau}, \tag{6}
\end{equation*}
$$

for weak H and small m, we can expand Eq. 6 as :

$$
\begin{equation*}
\frac{H}{k_{B} T} \approx M(1-\tau)+M^{3}\left(\tau-\tau^{2}+\frac{\tau^{3}}{3}+\ldots\right)+\ldots \tag{7}
\end{equation*}
$$

For zero magnetic field and when $T \rightarrow T_{c}^{-}$, we have :

$$
M^{2} \approx 3 \frac{T_{C}-T}{T}+\ldots
$$

Weiss' Mean Field Theory: Critical exponents

As $M \propto\left(\frac{T-T_{c}}{T}\right)^{\beta}$, the critical exponent of the ferromagnetic transition is $: \beta=1 / 2$.

Weiss' Mean Field Theory: Critical exponents

As $M \propto\left(\frac{T-T_{c}}{T}\right)^{\beta}$, the critical exponent of the ferromagnetic transition is $: \beta=1 / 2$.
The critical isotherm is the curve in the $H-M$ plan corresponding to $T=T_{c}$. Near the critical point, it is described by a critical exponent δ :

$$
H \sim M^{\delta} .
$$

Setting $\tau=1$ in Eq. 7, we find $\delta=3$. That is:

$$
\frac{H}{k_{B} T} \sim M^{3} .
$$

Weiss' Mean Field Theory: Critical exponents

As $M \propto\left(\frac{T-T_{c}}{T}\right)^{\beta}$, the critical exponent of the ferromagnetic transition is : $\beta=1 / 2$.
The critical isotherm is the curve in the $H-M$ plan corresponding to $T=T_{c}$. Near the critical point, it is described by a critical exponent δ :

$$
H \sim M^{\delta} .
$$

Setting $\tau=1$ in Eq. 7, we find $\delta=3$. That is:

$$
\frac{H}{R_{B} T} \sim M^{3} .
$$

The isothermal magnetic susceptibility also diverges near T_{c} :

$$
\chi_{T}=\frac{\partial M}{\partial H},
$$

from Eq. 7, we get :

$$
\frac{1}{k_{B} T}=\chi_{T}(1-\tau)+3 M^{2} \chi_{T}\left(\tau-\tau^{2}+\frac{1}{3} \tau^{3}\right)
$$

Weiss' Mean Field Theory: Critical exponents

$M=0$ for $T>T_{c}$, then:

$$
\begin{align*}
\chi_{T} & =\frac{1}{k_{B}} \frac{1}{T-T_{C}}+\ldots \tag{8}\\
& \sim\left|T-T_{C}\right|^{-\gamma} . \tag{9}
\end{align*}
$$

The critical exponent that characterizes the divergence in the isothermal susceptibility is $\gamma=1$.

Weiss' Mean Field Theory: Critical exponents

$M=0$ for $T>T_{C}$, then:

$$
\begin{align*}
\chi_{T} & =\frac{1}{k_{B}} \frac{1}{T-T_{C}}+\ldots \tag{8}\\
& \sim\left|T-T_{C}\right|^{-\gamma} . \tag{9}
\end{align*}
$$

The critical exponent that characterizes the divergence in the isothermal susceptibility is $\gamma=1$. For $T<T_{c}$,

$$
M=\sqrt{3}\left(\frac{T_{c}-T}{T}\right)^{1 / 2}+\ldots
$$

which yields to :

$$
\chi_{T}=\frac{3}{2 k_{B}} \frac{1}{T-T_{C}}+\ldots
$$

Below the transition temperature, the isothermal susceptibility diverges with $\gamma=1$

Weiss' Mean Field Theory: Critical exponents

$M=0$ for $T>T_{c}$, then:

$$
\begin{align*}
\chi_{T} & =\frac{1}{k_{B}} \frac{1}{T-T_{C}}+\ldots \tag{8}\\
& \sim\left|T-T_{C}\right|^{-\gamma} . \tag{9}
\end{align*}
$$

The critical exponent that characterizes the divergence in the isothermal susceptibility is $\gamma=1$. For $T<T_{c}$,

$$
M=\sqrt{3}\left(\frac{T_{c}-T}{T}\right)^{1 / 2}+\ldots
$$

which yields to:

$$
\chi_{T}=\frac{3}{2 k_{B}} \frac{1}{T-T_{C}}+\ldots
$$

Below the transition temperature, the isothermal susceptibility diverges with $\gamma=1$
The critical exponent α of the specific heat is calculated from the free energy written in the MFA approximation as :

$$
F_{m}=-k_{B} T \ln [2 \cosh (\beta J 2 d m)],
$$

Weiss' Mean Field Theory : Critical exponents

Note that $\cosh (x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots$ and that $M=0$ for $T>T_{c}$ while $M=\left(3 \frac{T_{c}-T}{T}\right)^{1 / 2}$ for $T<T_{c}$.

Weiss' Mean Field Theory : Critical exponents

Note that $\cosh (x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots$ and that $M=0$ for $T>T_{c}$ while $M=\left(3 \frac{T_{c}-T}{T}\right)^{1 / 2}$ for $T<T_{c}$. Taking the second derivative of the free energy with respect to the temperature leads to :

$$
C= \begin{cases}\frac{3}{2} k_{B} N & T<T_{C} \\ 0 & T>T_{C} .\end{cases}
$$

Weiss' Mean Field Theory : Critical exponents

Note that $\cosh (x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots$ and that $M=0$ for $T>T_{c}$ while $M=\left(3 \frac{T_{c}-T}{T}\right)^{1 / 2}$ for $T<T_{c}$. Taking the second derivative of the free energy with respect to the temperature leads to :

$$
C= \begin{cases}\frac{3}{2} k_{B} N & T<T_{C} \\ 0 & T>T_{C} .\end{cases}
$$

Since $C \sim\left|\frac{T_{c}-T}{T}\right|^{-\alpha}$, the critical exponent α must be zero

Weiss' Mean Field Theory : Critical exponents

Note that $\cosh (x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots$ and that $M=0$ for $T>T_{c}$ while $M=\left(3 \frac{T_{c}-T}{T}\right)^{1 / 2}$ for $T<T_{c}$. Taking the second derivative of the free energy with respect to the temperature leads to :

$$
C= \begin{cases}\frac{3}{2} k_{B} N & T<T_{C} \\ 0 & T>T_{C} .\end{cases}
$$

Since $C \sim\left|\frac{T_{c}-T}{T}\right|^{-\alpha}$, the critical exponent α must be zero
In summary, we have derived the following critical exponents:

$$
\beta=1 / 2, \delta=3, \gamma=1 \text { and } \alpha=0
$$

Weiss' Mean Field Theory : Critical exponents

Now, we derive an important relationship between the isothermal magnetic susceptibility and the correlations functions.

$$
\left.Z=\operatorname{Tr} \exp \left[H \beta \sum_{i} S_{i}+\beta\right\rangle \sum_{\langle i j\rangle} S_{i} S_{j}\right],
$$

Weiss' Mean Field Theory : Critical exponents

Now, we derive an important relationship between the isothermal magnetic susceptibility and the correlations functions.

$$
\left.Z=\operatorname{Tr} \exp \left[H \beta \sum_{i} S_{i}+\beta\right\rangle \sum_{\langle i j\rangle} S_{i} S_{j}\right],
$$

then :

$$
\sum_{i}\left\langle S_{i}\right\rangle=\frac{1}{\beta Z} \frac{\partial Z}{\partial H}, \quad \quad \sum_{i}\left\langle S_{i} S_{j}\right\rangle=\frac{1}{\beta^{2} Z} \frac{\partial^{2} Z}{\partial H^{2}} .
$$

Weiss' Mean Field Theory : Critical exponents

Now, we derive an important relationship between the isothermal magnetic susceptibility and the correlations functions.

$$
Z=\operatorname{Tr} \exp \left[H \beta \sum_{i} S_{i}+\beta \jmath \sum_{\langle i j\rangle} S_{i} S_{j}\right],
$$

then :

$$
\sum_{i}\left\langle S_{i}\right\rangle=\frac{1}{\beta Z} \frac{\partial Z}{\partial H}, \quad \quad \sum_{i}\left\langle S_{i} S_{j}\right\rangle=\frac{1}{\beta^{2} Z} \frac{\partial^{2} Z}{\partial H^{2}} .
$$

On the other side :

$$
\begin{aligned}
\chi_{T} & =\frac{\partial M}{\partial H}=\frac{1}{\beta N} \frac{\partial^{2} \log Z}{\partial H^{2}}=\frac{1}{N} k_{B} T\left[\frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}-\frac{1}{Z^{2}}\left(\frac{\partial Z}{\partial H}\right)\right] \\
& =\frac{1}{N}\left(k_{B} T\right)^{-1}\left[\sum_{i j}\left\langle S_{i} S_{j}\right\rangle-\left(\sum_{i}\left\langle S_{i}\right\rangle\right)^{2}\right]=\frac{1}{N}\left(k_{B} T\right)^{-1} \sum_{i j} G\left(r_{i}-r_{j}\right) \\
& =\left(k_{B} T\right)^{-1} \sum_{i} G\left(x_{i}\right)=\left(a^{d} k_{B} T\right)^{-1} \int_{\Omega} d^{d} r G(r) .
\end{aligned}
$$

Weiss' Mean Field Theory : Critical exponents

G have to reflect the divergence in χ_{T},

Weiss' Mean Field Theory : Critical exponents

G have to reflect the divergence in χ_{T}, in general we have :

$$
G(r) \sim \frac{e^{-|r| / \xi}}{|r|^{(d-1) / 2} \xi^{(d-3) / 2}}, \quad \text { for }|r| \gg \xi
$$

Weiss' Mean Field Theory : Critical exponents

G have to reflect the divergence in χ_{T}, in general we have :

$$
G(r) \sim \frac{e^{-|r| / \xi}}{|r|^{(d-1) / 2} \xi^{(d-3) / 2}}, \quad \text { for }|r| \gg \xi
$$

Combining this result with the equation describing the divergence of the isothermal susceptibility yields to:

$$
\begin{aligned}
\left(\frac{T_{c}-T}{T}\right)^{-1} & \sim \int \frac{r^{d-1} e^{-r / \xi}}{r^{(d-1) / 2} \xi^{(d-3) / 2}} d r \\
& \sim\left(\int z^{(d-1) / 2} e^{-z} d z\right) \xi^{2}
\end{aligned}
$$

with $z=r / \xi$.

Weiss' Mean Field Theory : Critical exponents

G have to reflect the divergence in χ_{T}, in general we have :

$$
G(r) \sim \frac{e^{-|r| / \xi}}{|r|^{(d-1) / 2} \xi^{(d-3) / 2}}, \quad \text { for }|r| \gg \xi
$$

Combining this result with the equation describing the divergence of the isothermal susceptibility yields to:

$$
\begin{aligned}
\left(\frac{T_{c}-T}{T}\right)^{-1} & \sim \int \frac{r^{d-1} e^{-r / \xi}}{r^{(d-1) / 2} \xi^{(d-3) / 2}} d r \\
& \sim\left(\int z^{(d-1) / 2} e^{-z} d z\right) \xi^{2}
\end{aligned}
$$

with $z=r / \xi$. Thus:

$$
\begin{equation*}
\xi \sim\left(\frac{T_{c}-T}{T}\right)^{-\nu}, \tag{10}
\end{equation*}
$$

with $\nu=1 / 2$.

Weiss' Mean Field Theory : Critical exponents

The last critical exponent we mention is η, which describe how the point correlation function behave at long distances at the critical point. $G(r)$ for long distances near the critical point is given by : $G(r) \sim r^{-(d-2+\eta)}$, with $\eta=0$. In principal η can be non zero.

Weiss' Mean Field Theory : Critical exponents

The last critical exponent we mention is η, which describe how the point correlation function behave at long distances at the critical point. $G(r)$ for long distances near the critical point is given by : $G(r) \sim r^{-(d-2+\eta)}$, with $\eta=0$. In principal η can be non zero.

Exponent	Mean Field	Experiment	2D Ising	3D Ising
α	0	$0.110-0.116$	0	0.110
β	$1 / 2$	$0.316-0.327$	$1 / 8$	0.325 ± 0.0015
γ	1	$1.23-1.25$	$7 / 4$	1.2405 ± 0.0015
δ	3	$4.6-4.9$	15	4.82
ν	$1 / 2$	0.625 ± 0.010	1	0.630
η	0	$0.016-0.06$	$1 / 4$	0.032 ± 0.003

Table 1: Critical exponents for the Ising universality class

Can we trust MFT ?

From Tab. 1, there is a clear discrepancy between the critical exponents obtained by the mean field approximation and the experimental result while the exponents of the 3D Ising model are in accordance with experience.

Can we trust MFT ?

From Tab. 1, there is a clear discrepancy between the critical exponents obtained by the mean field approximation and the experimental result while the exponents of the 3D Ising model are in accordance with experience.
This is due to the mean field approximation, from one hand the exponents in the approximation do not depend on the dimension, while from the table it is clear that the critical exponents depend on the dimentionality of the system.

Can we trust MFT ?

From Tab. 1, there is a clear discrepancy between the critical exponents obtained by the mean field approximation and the experimental result while the exponents of the 3D Ising model are in accordance with experience.
This is due to the mean field approximation, from one hand the exponents in the approximation do not depend on the dimension, while from the table it is clear that the critical exponents depend on the dimentionality of the system.On the other hand, the approximation supposes that the spins do not interact and each spin feels the same field due to all the other spins, and this contradicts the essence of magnetism, which is due to the long range cooperative behavior of spins.

Can we trust MFT ?

From Tab. 1, there is a clear discrepancy between the critical exponents obtained by the mean field approximation and the experimental result while the exponents of the 3D Ising model are in accordance with experience.
This is due to the mean field approximation, from one hand the exponents in the approximation do not depend on the dimension, while from the table it is clear that the critical exponents depend on the dimentionality of the system.On the other hand, the approximation supposes that the spins do not interact and each spin feels the same field due to all the other spins, and this contradicts the essence of magnetism, which is due to the long range cooperative behavior of spins.
The mean field approximation is clearly not a good choice for magnetic systems.

Can we trust MFT ?

The critical exponents satisfy the scaling relations obtained by thermodynamic considerations, they are given by :

$$
\begin{array}{r}
\alpha+2 \beta+\gamma=2, \\
\gamma=\beta(\delta-1), \\
\gamma=\nu(2-\eta) .
\end{array}
$$

Can we trust MFT ?

The critical exponents satisfy the scaling relations obtained by thermodynamic considerations, they are given by :

$$
\begin{array}{r}
\alpha+2 \beta+\gamma=2, \\
\gamma=\beta(\delta-1), \\
\gamma=\nu(2-\eta) .
\end{array}
$$

The precision of the mean field approximation increases as we increase the dimension of the system.

Can we trust MFT ?

The critical exponents satisfy the scaling relations obtained by thermodynamic considerations, they are given by :

$$
\begin{array}{r}
\alpha+2 \beta+\gamma=2, \\
\gamma=\beta(\delta-1), \\
\gamma=\nu(2-\eta) .
\end{array}
$$

The precision of the mean field approximation increases as we increase the dimension of the system. In fact, from the scaling relation $2-\alpha=d \nu$, where d is the dimension of the system, we can deduce the critical dimension at which we get precise results from the mean field approximation. Since $\alpha=0$ and $\nu=1 / 2, d_{c}$ must be 4 .

Landau Theory of Phase

 Transitions.
Landau Theory of Phase Transitions.

Landau Theory of Phase Transitions:

1. A theory for all phase transitions.
2. Idea ?: Guessing the potential.
3. Procedure ? : Writing
the potential as function of the order parameter m. The minimas with respect to m should describe
 the thermodynamic properties of the system at the critical point.

The order parameter

The order parameter m is a quantity used to describe phase transitions, it is zero (non-zero) in the disordered (ordered) phase.

The order parameter

The order parameter m is a quantity used to describe phase transitions, it is zero (non-zero) in the disordered (ordered) phase.

1. The existence of m is not always trivial.

The order parameter

The order parameter m is a quantity used to describe phase transitions, it is zero (non-zero) in the disordered (ordered) phase.

1. The existence of m is not always trivial.
2. The order parameter can be a scalar, vector or tensor.

Landau Theory

This theory consists of writing a function L called Landau free energy or Landau functional in terms of the order parameter η and the coupling constants $\left\{K_{i}\right\}$, where we keep only the terms compatible with the symmetries of the system.

Landau Theory

This theory consists of writing a function L called Landau free energy or Landau functional in terms of the order parameter η and the coupling constants $\left\{K_{i}\right\}$, where we keep only the terms compatible with the symmetries of the system. Landau free energy has the following constraints :

1. L has to follow the symmetries of the system.

Landau Theory

This theory consists of writing a function L called Landau free energy or Landau functional in terms of the order parameter η and the coupling constants $\left\{K_{i}\right\}$, where we keep only the terms compatible with the symmetries of the system. Landau free energy has the following constraints:

1. L has to follow the symmetries of the system.
2. Near T_{c}, L is a analytic function of η and $[K]$. We can write :

$$
L=\sum_{n=0}^{\infty} a_{n}([K]) \eta^{n}
$$

Landau Theory

This theory consists of writing a function L called Landau free energy or Landau functional in terms of the order parameter η and the coupling constants $\left\{K_{i}\right\}$, where we keep only the terms compatible with the symmetries of the system. Landau free energy has the following constraints:

1. L has to follow the symmetries of the system.
2. Near T_{c}, L is a analytic function of η and $[K]$. We can write :

$$
L=\sum_{n=0}^{\infty} a_{n}([K]) \eta^{n}
$$

3. $\eta=0$ in the disordered phase, while it is small and non zero in the ordered phase near T_{c}. Thus, for $T>T_{c}$ we solve the minimum equation for L by $\eta=0$ and for $T<T_{c} \eta \neq 0$ solves the minimum equation. For a homogeneous system we can write :

$$
\begin{equation*}
L=\sum_{n=0}^{4} a_{n}([K]) \eta^{n} \tag{11}
\end{equation*}
$$

Landau Theory

At equilibrium :

$$
\begin{equation*}
\frac{\partial L}{\partial \eta}=a_{1}+2 a_{2} \eta+3 a_{3} \eta^{2}+4 a_{4} \eta^{3}=0 . \tag{12}
\end{equation*}
$$

Landau Theory

At equilibrium :

$$
\begin{equation*}
\frac{\partial L}{\partial \eta}=a_{1}+2 a_{2} \eta+3 a_{3} \eta^{2}+4 a_{4} \eta^{3}=0 \tag{12}
\end{equation*}
$$

For $T>T_{c}, \eta=0$ is zero. Then, $a_{1}=0$.

Landau Theory

At equilibrium :

$$
\begin{equation*}
\frac{\partial L}{\partial \eta}=a_{1}+2 a_{2} \eta+3 a_{3} \eta^{2}+4 a_{4} \eta^{3}=0 . \tag{12}
\end{equation*}
$$

For $T>T_{c}, \eta=0$ is zero. Then, $a_{1}=0$. In fact, the system is invariant under change of η by $-\eta$, that is L is an even function: $L(\eta)=L(-\eta)$.

Landau Theory

At equilibrium :

$$
\begin{equation*}
\frac{\partial L}{\partial \eta}=a_{1}+2 a_{2} \eta+3 a_{3} \eta^{2}+4 a_{4} \eta^{3}=0 \tag{12}
\end{equation*}
$$

For $T>T_{c}, \eta=0$ is zero. Then, $a_{1}=0$. In fact, the system is invariant under change of η by $-\eta$, that is L is an even function: $L(\eta)=L(-\eta)$. Thus:

$$
\begin{equation*}
L=a_{0}([K], T)+a_{2}([K], T) \eta^{2}+a_{4}([K], T) \eta^{4} . \tag{13}
\end{equation*}
$$

Landau Theory

At equilibrium :

$$
\begin{equation*}
\frac{\partial L}{\partial \eta}=a_{1}+2 a_{2} \eta+3 a_{3} \eta^{2}+4 a_{4} \eta^{3}=0 \tag{12}
\end{equation*}
$$

For $T>T_{c}, \eta=0$ is zero. Then, $a_{1}=0$. In fact, the system is invariant under change of η by $-\eta$, that is L is an even function: $L(\eta)=L(-\eta)$. Thus:

$$
\begin{equation*}
L=a_{0}([K], T)+a_{2}([K], T) \eta^{2}+a_{4}([K], T) \eta^{4} . \tag{13}
\end{equation*}
$$

$a_{0}([K], T)$ represents the value L in the disordered phase ($\eta=0$ for $\left.T>T_{c}\right)$, it describes the degrees of freedom of the system that cannot be understood via the order parameter

Landau Theory

For a_{2} and a_{4} expanding in temperature near T_{c}, we obtain:

$$
\begin{aligned}
& a_{4}=a_{4}^{0}+\left(T-T_{c}\right) a_{4}^{1}+\ldots \\
& a_{2}=a_{2}^{0}+\frac{\left(T-T_{c}\right)}{T_{c}} a_{2}^{1}+O\left(\left(T-T_{c}\right)^{2}\right),
\end{aligned}
$$

Landau Theory

For a_{2} and a_{4} expanding in temperature near T_{c}, we obtain:

$$
\begin{aligned}
& a_{4}=a_{4}^{0}+\left(T-T_{c}\right) a_{4}^{1}+\ldots \\
& a_{2}=a_{2}^{0}+\frac{\left(T-T_{c}\right)}{T_{c}} a_{2}^{1}+O\left(\left(T-T_{c}\right)^{2}\right)
\end{aligned}
$$

Since $\partial^{2} L / \partial \eta^{2}=1 / \chi=0$ as $T \rightarrow T_{c}$, one has $a_{2}^{0}=0$ and:

$$
a_{2}=\frac{\left(T-T_{c}\right)}{T_{c}} a_{2}^{1}+O\left(\left(T-T_{c}\right)^{2}\right)
$$

The extension to the case $H \neq 0$ for the Ising ferromagnet is immediate

$$
\begin{equation*}
L=a\left(\frac{T-T_{c}}{T_{c}}\right) \eta^{2}+\frac{1}{2} b \eta^{4}-H \eta . \tag{14}
\end{equation*}
$$

Landau Theory : Continuous Phase Transitions

Figure 11: Landau free energy for different values of T and H. From left to right : $H<0, H=0$ and $H>0$.

Landau Theory : Continuous Phase Transitions

Figure 11: Landau free energy for different values of T and H. From left to right : $H<0, H=0$ and $H>0$.

When $H=0$ and for $T>T_{c}, L$ has a minimum at $\eta=0$. When $T=T_{c}$ Landau potential has zero curvature at $\eta=0$ while $\eta=0$ is still the global minimum. For $T<T_{c}$, Landau free energy shows two degenerate minima at $\eta= \pm n_{s}(T)$

Landau Theory : Continuous Phase Transitions

Solving $\partial L / \partial \eta=0$ for η we can read off the critical exponent β. We have :

$$
\begin{equation*}
\eta=0 \tag{or}
\end{equation*}
$$

$$
\eta=\sqrt{-\frac{a t}{b}}
$$

then, for $T<T_{c} \beta=1 / 2$.

Landau Theory : Continuous Phase Transitions

Solving $\partial L / \partial \eta=0$ for η we can read off the critical exponent β. We have :

$$
\eta=0 \quad \text { or } \quad \eta=\sqrt{-\frac{a t}{b}},
$$

then, for $T<T_{c} \beta=1 / 2$.
Landau potential is zero for $t>0$ and for $t<0$ we can write :

$$
L=-\frac{1}{2} \frac{a^{2} t^{2}}{b}
$$

Landau Theory : Continuous Phase Transitions

Solving $\partial L / \partial \eta=0$ for η we can read off the critical exponent β. We have:

$$
\eta=0 \quad \text { or }
$$

$$
\eta=\sqrt{-\frac{a t}{b}}
$$

then, for $T<T_{c} \beta=1 / 2$.
Landau potential is zero for $t>0$ and for $t<0$ we can write :

$$
L=-\frac{1}{2} \frac{a^{2} t^{2}}{b}
$$

The critical exponent α of the heat capacity can be extracted by writing: $C_{V}=-T \partial^{2} L / \partial T^{2}$, then :

$$
C_{V}= \begin{cases}0 & T>T_{c} \\ a^{2} / b T_{c} & T<T_{c}\end{cases}
$$

Landau Theory : Continuous Phase Transitions

Solving $\partial L / \partial \eta=0$ for η we can read off the critical exponent β. We have:

$$
\eta=0 \quad \text { or } \quad \eta=\sqrt{-\frac{a t}{b}},
$$

then, for $T<T_{c} \beta=1 / 2$.
Landau potential is zero for $t>0$ and for $t<0$ we can write :

$$
L=-\frac{1}{2} \frac{a^{2} t^{2}}{b}
$$

The critical exponent α of the heat capacity can be extracted by writing: $C_{V}=-T \partial^{2} L / \partial T^{2}$, then :

$$
C_{V}= \begin{cases}0 & T>T_{c} \\ a^{2} / b T_{c} & T<T_{c}\end{cases}
$$

which shows that the heat capacity exhibit a discontinuity and that $\alpha=0$

Landau Theory : Continuous Phase Transitions

For the case $\mathrm{H}>0$. Taking the derivative with respect to H in Eq. 14 gives :

$$
\begin{equation*}
a t \eta+b \eta^{3}=\frac{1}{2} H . \tag{15}
\end{equation*}
$$

Landau Theory : Continuous Phase Transitions

For the case $\mathrm{H}>0$. Taking the derivative with respect to H in Eq. 14 gives :

$$
\begin{equation*}
a t \eta+b \eta^{3}=\frac{1}{2} H . \tag{15}
\end{equation*}
$$

On the critical isotherm, that is on $t=0$. We have $H \propto \eta^{3}$ and we read the critical exponent $\delta=3$.

Landau Theory : Continuous Phase Transitions

For the case $\mathrm{H}>0$. Taking the derivative with respect to H in Eq. 14 gives:

$$
\begin{equation*}
a t \eta+b \eta^{3}=\frac{1}{2} H . \tag{15}
\end{equation*}
$$

On the critical isotherm, that is on $t=0$. We have $H \propto \eta^{3}$ and we read the critical exponent $\delta=3$. The isothermal susceptibility χ_{T} can be computed by taking the derivative of Eq. 15 with respect to H . That is :

$$
\begin{equation*}
\chi_{T}=\frac{\partial \eta(H)}{\partial H}=\frac{1}{2\left(a t+3 b \eta(H)^{2}\right)}, \tag{16}
\end{equation*}
$$

Landau Theory : Continuous Phase Transitions

For the case $\mathrm{H}>0$. Taking the derivative with respect to H in Eq. 14 gives :

$$
\begin{equation*}
a t \eta+b \eta^{3}=\frac{1}{2} H . \tag{15}
\end{equation*}
$$

On the critical isotherm, that is on $t=0$. We have $H \propto \eta^{3}$ and we read the critical exponent $\delta=3$. The isothermal susceptibility χ_{T} can be computed by taking the derivative of Eq. 15 with respect to H . That is :

$$
\begin{equation*}
\chi_{T}=\frac{\partial \eta(H)}{\partial H}=\frac{1}{2\left(a t+3 b \eta(H)^{2}\right)}, \tag{16}
\end{equation*}
$$

where $\eta(H)$ is a solution of Eq. 15. For $t>0$, we have $\eta=0$, then $\chi_{T} \propto t^{-1}$ while for $t<0$, we have $\eta=(-a t / b)^{1 / 2}$ and $\chi_{T} \propto t^{-1}$. Thus, the critical exponent is $\gamma=1$.

Landau Theory : First order Phase Transitions

What happens if we add a cubic term in L ?

Landau Theory : First order Phase Transitions

What happens if we add a cubic term in L ? In general we have :

$$
\begin{equation*}
L=a t \eta^{2}+\frac{1}{2} b \eta^{4}+C \eta^{3}-H \eta . \tag{17}
\end{equation*}
$$

Where a and b are positive.

Landau Theory : First order Phase Transitions

What happens if we add a cubic term in L ? In general we have :

$$
\begin{equation*}
L=a t \eta^{2}+\frac{1}{2} b \eta^{4}+C \eta^{3}-H \eta . \tag{17}
\end{equation*}
$$

Where a and b are positive. A derivative of L with respect to η at equilibrium and at zero magnetic field $(H=0)$ gives:

$$
\eta=\left\{\begin{array}{l}
0, \\
-c \pm \sqrt{c^{2}-a t / b}, \quad \text { with } c=3 c / 4 b
\end{array}\right.
$$

Landau Theory : First order Phase Transitions

What happens if we add a cubic term in L ? In general we have :

$$
\begin{equation*}
L=a t \eta^{2}+\frac{1}{2} b \eta^{4}+C \eta^{3}-H \eta . \tag{17}
\end{equation*}
$$

Where a and b are positive. A derivative of L with respect to η at equilibrium and at zero magnetic field $(H=0)$ gives:

$$
\eta=\left\{\begin{array}{l}
0, \\
-c \pm \sqrt{c^{2}-a t / b}, \quad \text { with } c=3 c / 4 b
\end{array}\right.
$$

The solution $\eta \neq 0$ is real when the argument of the square root is positive, i.e. $\sqrt{c^{2}-a t / b}>0$. That is, $t<t^{*}=b c^{2} / a$

Landau Theory : First order Phase Transitions

Figure 12: L as a function of η for different values of T showing how Landau's theory describes first order phase transitions

Landau Theory : First order Phase Transitions

Figure 12: L as a function of η for different values of T showing how Landau's theory describes first order phase transitions

A sufficient but not necessary condition of the occurrence of continuous phase transitions is that there are no cubic terms in the potential. In general, the cubic term causes a first order phase transition.

Thank you for your attendance and your attention.

