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Introduction



What is a Phase ? What is a phase transition ?
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Figure 1: Phase diagram of water.
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What is a Phase ? What is a phase transition ?
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Figure 2: Phase diagram of a ferromagnetic material.
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What is a Phase ? What is a phase transition ?

Bc−Bc

MR

M∞

−MR

−M∞

B

M

5



How Phase Transitions Occur in
Principle



Preliminaries : Convexity

f(x) is a concave function of x if :

f
(
x1 + x2
2

)
≤ f(x1) + f(x2)

2 for all x1 and x2.

Which means that the chord joining the points f(x1) and f(x2) lies
above of f(x) for all x in x1 < x < x2.
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Figure 3: Convex function.
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Preliminaries : Concavity

f(x) is a concave function of x if :

f
(
x1 + x2
2

)
≥ f(x1) + f(x2)

2 for all x1 and x2.

That is the chord joining the points f(x1) and f(x2) lies below of f(x)
for all x in x1 < x < x2.
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Figure 4: Concave function
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Consequences of the convexity and the concavity

The specific heat and the susceptibility (for magnetic materials) are
positive thermodynamical response function, which implies that the
free energy F is convex.

This is a direct consequence of Le Chatelier’s
principle for stable equilibrium which states that : if a system is in
thermal equilibrium any small spontaneous fluctuation in the
system parameter, the system gives rise to certain processes that
tends to restore the system back to equilibrium.
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Preliminaries : Thermodynamic limit

The free energy FΩ = −kbT log ZΩ and its derivatives encodes all the
necessary information on the thermodynamics of the system Ω.

When Ω is finite, there is no information about phase transitions or
phases as this phenomena occurs theoretically in the
thermodynamic limit that is Ω → ∞.
The existence of the thermodynamic limit is not trivial as it fails to
exist for some systems.
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Preliminaries : Existence of the Thermodynamic limit

Consider a charged system at T = 0 in 3 dimensions, the interaction
between two particles separated by a distance r is given by
Coulomb’s law :

U(r) = A/r,
with A being a constant

. Then, the energy for a spherical system of
radius R is :

E =
∫ R

0

(
4
3πr

3ρ

)
A
r 4πr

2ρdr

= A (4π)
2

15 ρ2R5.

The energy per unit volume is then : ϵ = A (4π)2
15 ρ2R2, which diverges

as R→ ∞.

Inverse square law forces like gravity and electrostatics are too
long-ranged to permit thermodynamic behaviour
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Preliminaries : Existence of the Thermodynamic limit

A more general case is where the interaction potential is of the form :

U(r) = A/rm.

The energy per unit volume of a unit sphere in d-dimensions is :

ϵ ∼ Rd−m.

Taking the limit R→ ∞, the system is stable only when m > d. The
thermodynamic limit exist then only when m > d.
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Preliminaries : Phase boundaries and Phase transitions

Consider a finite system Ω, with a Hamiltonian :

HΩ = −kbT
∑
n
Knθn,

The free energy is an extensive quantity, that is FΩ ∝ V(Ω). Then, for
finite systems we have :

FΩ = V(Ω)fb + S(Ω)fs + O(Ld−2),

Suppose we have D coupling constants, then the dimension of the
phase diagram is D. fb[K] is analytic almost everywhere, the possible
locations of non-analyticities of fb[K] are points, lines, planes and
hyperplanes, etc, having a dimentionality Ds
Then, a phase is just a region of analycity of fb[K] and loci of
co-dimension C = D− Ds = 1 is called a phase boundary.
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Preliminaries : Phase boundaries and Phase transitions

fb[K] can be used also to classify phase transitions :

• First order phase transitions
If one or more ∂fb/∂Ki are discountinous across a phase
boundary, the transition is first order.

• Continous phase transitions
If the first derivative of fb[K] is countinous across the phase
boundary, the transition is said to be countinous phase
transitions (or a second order phase transition)
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The role model



The Ising model

The Ising model can be written as :

−HΩ =
∑
i∈Ω

HiSi +
∑
ij

JijSiSj
∑
ijk

KijkSiSjSk + . . . (1)

We restrict ourselves only to two spins interactions, then we have :

−HΩ =
∑
i∈Ω

HiSi +
∑
ij

JijSiSj. (2)

For the thermodynamic limit to exist in the Ising model, the
following condition need to be satisfied :∑

j̸=i

|Jij| < ∞.

The free energy is given by : FΩ(T,Hi, Jij) = −kbT log Tr e−βHΩ .
The thermodynamical properties can be calculated through FΩ, for
example the magnetization at site i is :

∂FΩ
∂Hi

= −kBT
1

Tr e−βHΩ
Tr

Si
kbT

e−βHΩ = −⟨Si⟩Ω
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The Ising model : Spin-reversal symmetry

The Ising model is Z2 symmetric. That is a rotation of π of all the
spins, leave the system energy unchanged. Mathematically, this
implies that :

HΩ(H, J, Si) = HΩ(−H, J,−Si).

Thus :

ZΩ(−H, J, T) =
∑
Si=±1

e−βHΩ(−H,J,Si)

=
∑
Si=±1

e−βHΩ(−H,J,−Si)

=
∑
Si=±1

e−βHΩ(H,J,Si)

= ZΩ(H, J, T).

The free energy is then :

F(H, J, T) = F(−H, J, T)
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The Ising model : Sub-lattice symmetry

This symmetry emerges at zero magnetic field (H = 0). We divide the
lattice into two interpenetrating lattices A and B. The spins of lattice
A interacts only with the ones in the lattice B

Figure 5: Two interpenetrating lattices A and B
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The Ising model : Sub-lattice symmetry

The Hamiltonian is HΩ(0, J, SAi , SBi ) = −J
∑

⟨ij⟩ SAi SBj .
The sub-lattice symmetry implies that :

HΩ(0,−J, SAi , SBi ) = HΩ(0, J,−SAi , SBi ) = HΩ(0, J, SAi ,−SBi ).

In zero field we write the partition function :

ZΩ(0,−J, T) = Tr e−βHΩ(0,−J,T)

=
∑
SAi

∑
SBj

e−βHΩ(0,−J,SAi ,S
B
i )

=
∑
SAi

∑
SBj

e−βHΩ(0,J,−SAi ,S
B
i )

=
∑
SAi

∑
SBj

e−βHΩ(0,J,SAi ,S
B
i )

= ZΩ(0, J, T).
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The Ising model : Sub-lattice symmetry

Thus, the free energy satisfies the following :

F(0, J, T) = F(0,−J, T).

The sub-lattice symmetry implies that the thermodynamics of the
ferromagnetic Ising model and that of the anti-ferromagnetic Ising
model are the same at zero magnetic field.
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The Ising model : Existence of Phase Transitions

The phase diagram is a guide map of the different phases a system
or a model has. How de we build such a map ?

One strategy to
construct the phase diagram is through the energy-entropy
argument. We study the free energy at high and low temperatures
and if the macroscopic states of the system obtained by the two
limits are different, then we conclude that at least one phase
transition has occurred at some temperature.
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The Ising model : 0T Phase diagram

Consider the Ising model in d-dimensions at T = 0, then F=E.

Suppose that we have available the energy configurations of our
system.

En

[K]
[Kc]

Figure 6: The mechanism of level crossing
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The Ising model : 0T Phase diagram

The ground state is obtained for J > 0 by noticing that −J
∑
⟨ij⟩

SiSj is

minimized when Si = Sj and the term −H
∑
i

Si is minimized by

Si = +1 when H > 0 and Si = −1 when H < 0.

So that, for each spin Si
we can have the following configurations that minimize the energy of
the system :

Si =
{
+1 H > 0, J > 0;
−1 H < 0, J > 0.

The magnetization is then :

MΩ =
1

N(Ω)
∑
i∈Ω

Si =
{
+1 H > 0;
−1 H < 0.

A phase transition occurs at zero temperature and at zero magnetic
field.

21
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The Ising model : 1D phase diagram

Consider N spins pointing all up.

Switching on the temperature has
an effect of flipping some spins. Now, say one domain wall is
introduced as shown below :

↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

What effect does this have on the thermodynamics ? ∆E = 2J, while
the domain wall introduced can be placed in N different positions,
the entropy is then ∆S = kb lnN. Therefore, the change in the free
energy is :

∆F = ∆E− T∆S = 2J− kbT lnN.

For finite temperatures, ∆F→ −∞ as N→ ∞. The system is not
stable.

There is no long range order. Thus, the 1D Ising model has no phase
transitions at H = 0

22
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The Ising model : 2D phase diagram

We consider again a domain of flipped spins, in a background of
spins with long range order, but this time the domain in two
dimensional. What is the energy difference ? and what is the
entropy?

The internal energy change of a domain of length L is ∆E = 2JL. The
entropy can be estimated by enumerating the different possibilities
of the domain wall, it turns out that this number is proportional to
the coordinate number of the lattice z. The entropy is then
∆S = kbL log(z− 1) and the free energy is:

∆F = 2JL− (log(z− 1)) kbTL.

23



The Ising model : 2D phase diagram

We consider again a domain of flipped spins, in a background of
spins with long range order, but this time the domain in two
dimensional. What is the energy difference ? and what is the
entropy?
The internal energy change of a domain of length L is ∆E = 2JL. The
entropy can be estimated by enumerating the different possibilities
of the domain wall, it turns out that this number is proportional to
the coordinate number of the lattice z. The entropy is then
∆S = kbL log(z− 1) and the free energy is:

∆F = 2JL− (log(z− 1)) kbTL.
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The Ising model : 2D phase diagram

There may exist a critical temperature Tc above which the entropy
term is dominate. Which means, creation of more domains and
hence no long-range order can exist.

below Tc is where the term of the interaction of the spins is
dominate. Which means, less domains and long-range order would
be possible.

We can speak of phase transitions at finite temperatures only in
the 2D Ising model or above
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The impossibility theorem

The impossibility of phase transitions can be seen immediately from
the spin-reversal symmetry of the Ising model. We know that the
free energy satisfies the following :

FΩ(H, J, T) = FΩ(−H, J, T),

and the magnetization satisfies :

N(Ω)MΩ(H) = −∂FΩ(H)
∂H = −∂FΩ(−H)

∂H =
∂FΩ(−H)
∂ − H = −N(Ω)MΩ(−H).

Then :
MΩ(H) = −MΩ(−H),

we are interested in the zero field case, thus:

MΩ(0) = −MΩ(−0) = 0.

This is the impossibility theorem it shows that the magnetization in
H = 0 should be zero, a result that contradicts our previous finding.

What has gone wrong ?
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Spontaneous Symmetry Breaking

When N→ ∞ the free energy develops a discontinuity in its first
derivative, and knowing the fact that F(H) is a convex function, the
condition F(H) = F(−H) does not imply M(0) = 0, for that to happen
we need to add the assumption of the smoothness of the free
energy at H = 0 and that the left and right derivatives are equal.

The smoothness of F follows if :

F(H) = F(0) + O(Hp) p > 1

and

lim
ϵ→0

F(+ϵ)− F(0)
ϵ

= lim
ϵ→0

F(−ϵ)− F(0)
ϵ

= 0

We can then turn around the impossibility theorem and still satisfy
the analytical properties of the free energy by writing :

F(H) = F(0)−Ms|H|+ O(Hp) p > 1

which is not differentiable at H = 0, but still hold the convexity
property as depicted Fig. 7
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Spontaneous Symmetry Breaking

H

F(H)

Figure 7: The free energy as function of H for a finite system (dashed line)
and for an infinite system (solid line)
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Spontaneous Symmetry Breaking

∂F
∂H =

{
−Ms + O(Hp−1), H > 0
−Ms + O(Hp−1), H < 0.

As |H| → 0, we have :

M = − ∂F
∂H =

{
Ms, H > 0
−Ms, H < 0.

The spontaneous magnetization is given by :

±Ms = lim
H→0±

− ∂F
∂H .

Notice :

lim
N(Ω)→∞

lim
H→0

1
N(Ω)

∂FΩ(H)
∂H = 0 and lim

H→0
lim

N(Ω)→∞

1
N(Ω)

∂FΩ(H)
∂H ̸= 0

are not equal. Even tough the Hamiltonian is invariant under spin
reversal, the expectation values do not follow this symmetry, so that
⟨Si⟩ ̸= 0 and : M = lim

N→∞
1

N(Ω)

∑
i⟨Si⟩ ̸= 0. These phenomena is what

we call spontaneous symmetry breaking .
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How Phase Transitions Occur in
Practice



Transfer Matrix

We start with the 1D nearest-neighbors Ising model.

−HΩ = H
∑
i∈Ω

Si +
∑
⟨ij⟩

JijSiSj, J > 0.

Let h = βH and K = βJ, and suppose periodic boundary conditions,
that is SN+1 = S1.

Then, the partition function is :

ZN(h, K) = Tr exp

[
h
∑
i

Si + K
∑
i

SiSi+1

]
=
∑
S1

· · ·
∑
SN

[
e h
2 (S1+S2)+KS1S2

]
.
[
e h
2 (S2+S3)+KS2S3

]
. . .
[
e h
2 (SN+S1)+KSNS1

]
.

Each term in the partition function can be written as a matrix T :

TS1S2 = e h
2 (S1+S2)+KS1S2 ,

whose elements are :

T =
(
T1,1 T1,−1
T−1,1 T−1,−1.

)
=

(
eh+K e−K
e−K e−h+K,

)
(3)
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Transfer Matrix

the partition function can be re-written in terms of the matrix T as :

ZN(h, K) =
∑
S1

· · ·
∑
SN

TS1S2TS2S3 . . . TSNS1 .

Thus :
ZN(h, K) = Tr

(
TN
)
,

since T is real and symmetric, we diagonalize it by writing :

T′ = S−1TS,

where S is a matrix whose rows and columns are eigenvectors of T.
Then :

T′ =
(
λ1 0
0 λ2

)
,

where λ1 and λ2 are the eigenvalues of T. The cyclic property of the
trace operation implies that Tr (T′) = Tr (T), so that :

Tr
(
TN
)
= λN1 + λN2 .
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Transfer Matrix

Assuming that λ1 > λ2, we have :

ZN(h, K) = λN1

(
1+

[
λ2
λ1

]N)
,

and taking the thermodynamic limit N→ ∞, we get :

ZN(h, K) ≈ λN1
(
1+ O(e−αN)

)
,

where α = log
(

λ1
λ2

)
is a positive constant.

When N→ ∞ only the
largest eigenvalue of the transfer matrix is relevant. Then, the free
energy is : lim

N→∞
FN(h,K,T)

N = −kBT log(λ1).

Solving Eq. 3, we obtain : λ1,2 = eK
[
coshh±

√
sinh2 h+ e−4K

]
.

The free energy of the one dimensional Ising model in an external
magnetic field is :

FN(h, K, T)
N = −J− kBT log

[
coshh+

√
sinh2+e−4K

]
(4)
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Perron’s Theorem

Theorem
For an N × N matrix (N < ∞) A, with positive entries Aij for all (i, j),
the largest eigenvalue satisfies the following :

1. real and positive
2. non-degenerate
3. an analytic function of Aij

Inspecting Eq. 4 leads to the conclusion that to have non-zero
temperature phase transitions, λ1 should be either non-analytic,
degenerate (λ1 = λ2), or λ1 = 0. On the other side, the transfer matrix
for 1D systems with sufficiently short-ranged interactions satisfy the
Perron’s theorem, that is λ1 ̸= 0, λ1 ̸= λ2 and λ1 in analytic.
Thus, we immediately conclude that there are no finite temperature
phase transitions in the 1D Ising model.
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Transfer Matrix : 0T Ising model

At T = 0 (K→ ∞) : λ1 = eK
[
coshh+

√
sinh2 h

(
1+ O(e−4K)

)]
= eK+|h|.

Then, the free energy and the magnetization are given by :

F = −NkBT (K+ |h|) + O(T2) = −N (J+ |H|) , M = − 1
N

∂F
∂H =

{
1 H > 0;
−1 H < 0,
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M

Figure 8: Magnetization vs the magnetic field. Blue line correspond to T = 0,
while the orange line is for a non-zero temperature.
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Thermodynamics

We switch off the magnetic field to calculate the specific heat CV and
the magnetic susceptibility χT.

Then : λ1 = eK
(
1+ e−2K

)
= 2 cosh K.

The partition function is Z = (2 cosh K)N as N→ ∞ and the free
energy is : F = −kBTN

[
K+ log

(
1+ e−2K

)]
, with limits :

F/N =

{
−J T→ 0 (K→ ∞) ;

−kBT log 2 T→ ∞ (K→ 0) .

The specific heat is :

CV =
∂E
∂T = − 1

kBT2
∂E
∂β

=
1

kBT2
∂2Z
∂β2

=
NJ2
kBT2

sech2
(

J
kBT

)
.

The heat capacity does not show any singularity, however it exhibit a
peak at J ∼ kBT, a phenomena known as Schottky anomaly
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Thermodynamics

We switch off the magnetic field to calculate the specific heat CV and
the magnetic susceptibility χT. Then : λ1 = eK

(
1+ e−2K

)
= 2 cosh K.

The partition function is Z = (2 cosh K)N as N→ ∞ and the free
energy is : F = −kBTN

[
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Thermodynamics

The magnetic susceptibility is : χ = ∂M
∂H = β ∂M

∂h = β ∂
∂h

(
sinh h√

sinh2 h+e−4K

)

for small field (h→ 0), it reduces to:

χ ∼


1
kbT

, T→ ∞(Curie’s law);

e
2J
kBT

kbT
, T→ 0
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Figure 9: Magnetic susceptibility vs temperature at zero magnetic field.
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Correlation functions

In statistical mechanics, a correlation functions is a measure of
order in a system, more concretely they describe how microscopic
variables, such as spin and density, co-vary with one another across
space and time.

The two point correlation function is defined as :

G(i, j) = ⟨SiSj⟩ − ⟨Si⟩⟨Sj⟩ = ⟨SiSj⟩, (For T > 0 and h = 0 : ⟨Si⟩ = ⟨Sj⟩ = 0).

A spin at site i is only sensitive to its first neighbor, then :

G(i, j) = ⟨SiSi+1⟩⟨Si+1Si+2⟩⟨Si+2Si+3⟩ . . . ⟨SN−1SN⟩.

Then :
⟨SiSi+1⟩ =

1
Z
∑
{S}

SiSi+1eKSiSi+1 =
∂ log Z
∂K .
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Correlation functions

The partition function Zi,i+1 is :

Z =
∑
Si=±1

eKSiSi+1 = 2
(
eK + e−K

)
= 22 cosh(K).

Then :
⟨SiSi+1⟩ = tanh(K) = tanh(βJ).
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1.0

G
(i
,i
+
1)

Figure 10: Nearest neighbours correlation function vs temperature. For high
temperatures (K→ 0) the two spins are less correlated, while for low
temperatures (K→ ∞) the spins are highly correlated
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Correlation functions

It is straightforward to generalize the result beyond (i, i+ 1) :

G(i, i+ j) = ⟨SiSi+j⟩
= tanh(Ki) tanh(Ki+1) . . . tanh(Ki+j−1)

= (tanh(K))j ,

An expected result, due to the translation symmetry of the system.
We say that G(i, i+ j) depends only on the distance between the
spins “j”. That is, the correlation function satisfies G(i, i′) = G(i− i′).
Long-range order is manifested at T = 0, that is G(i, i+ j) = 1.
Switching on the temperature reduces the magnitude of G(i, i+ j)
and it decays exponentially as :

G(i, i+ j) = e−j log(coth K) = e−j/ξ,

where ξ =
1

log(coth K) is called : the correlation length
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Correlation functions

The correlation length measures the length over which the spins are
correlated. As we approach the transition temperature of the 1D Ising
model (T→ 0), the correlation length diverges to infinity (ξ diverges
exponentially fast), while it approaches zero at high temperatures.

Notice that :
(

λ1
λ2

)
h=0

= eK+e−K

eK−e−K = coth(K),
on the other hand : ξ−1 = log(coth K). Then, we prove a general result
relating the eigenvalues of the transfer matrix and the correlation
length :

ξ−1 = log

(
λ1
λ2

)
. (5)

A clear indication of a phase transition is a divergence in the
correlation length, for that to happen we need λ1 = λ2 (the largest
eigenvalue need to be degenerate). This is a general result.
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Weiss’ Mean Field Theory

Mean field theory :

1. Goal ? : treating interacting
statistical mechanical systems

2. Idea ? : for a system of N particles,
we replace the interaction between
the particles by a mean potential
and we forget about fluctuations.

3. Effectiveness ? : when
the fluctuation are weak, which not
the case around the critical region

40



Weiss’ Mean Field Theory

The Ising model : HΩ = −J
∑

⟨ij⟩ SiSj − H
∑

i Si.

Take J = 0, a paramagnet. The partition function for such a system is :

ZΩ(0,H) =
[
2 cosh

(
H
kBT

)]N
,

the magnetization is :

M = − 1
N

∂F
∂H = tanh

(
H
kBT

)
.

In this approach, the Ising model can be written as : HΩ = −
∑

i SiHi,
where

Hi = H︸︷︷︸
magnetic field

+
∑
j

Jij⟨Sj⟩︸ ︷︷ ︸
the mean field

+
∑
j

Jij
(
Sj − ⟨Sj⟩

)
︸ ︷︷ ︸

the fluctuations

.

for a d-dimensional hypercubic lattice we have : Hi = H+ 2dJm,
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Weiss’ Mean Field Theory: Critical exponents

Then, the magnetization is :

M = tanh

(
H+ 2dJm
kBT

)
,

when H = 0, the critical temperature is : Tc = 2dJ/kB.

The equation of
state can be obtained by putting τ = Tc/T and we find :

M = tanh(
H
kBT

+mτ) =
tanh( H

kBT ) + tanhmτ

1+ tanh( H
kBT ) tanhmτ

,

then :
tanh(

H
kBT

) =
M− tanhmτ

1−M tanhmτ
, (6)

for weak H and small m, we can expand Eq. 6 as :
H
kBT

≈ M(1− τ) +M3
(
τ − τ 2 +

τ 3

3 + . . .

)
+ . . . (7)

For zero magnetic field and when T→ T−c , we have :

M2 ≈ 3Tc − T
T + . . .
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Weiss’ Mean Field Theory: Critical exponents

As M ∝
( T−Tc

T
)β , the critical exponent of the ferromagnetic transition

is :β = 1/2.

The critical isotherm is the curve in the H-M plan corresponding to
T = Tc. Near the critical point, it is described by a critical exponent δ :

H ∼ Mδ.

Setting τ = 1 in Eq. 7, we find δ = 3. That is :
H
kBT

∼ M3.

The isothermal magnetic susceptibility also diverges near Tc :

χT =
∂M
∂H ,

from Eq. 7, we get :
1
kBT

= χT(1− τ) + 3M2χT(τ − τ 2 +
1
3τ

3).
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T = Tc. Near the critical point, it is described by a critical exponent δ :

H ∼ Mδ.

Setting τ = 1 in Eq. 7, we find δ = 3. That is :
H
kBT

∼ M3.
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Weiss’ Mean Field Theory: Critical exponents

M = 0 for T > Tc, then :

χT =
1
kB

1
T− Tc

+ . . . (8)

∼ |T− Tc|−γ . (9)

The critical exponent that characterizes the divergence in the
isothermal susceptibility is γ = 1.

For T < Tc,

M =
√
3
(
Tc − T
T

)1/2
+ . . .

which yields to :
χT =

3
2kB

1
T− Tc

+ . . .

Below the transition temperature, the isothermal susceptibility
diverges with γ = 1
The critical exponent α of the specific heat is calculated from the
free energy written in the MFA approximation as :

Fm = −kBT ln [2 cosh (βJ2dm)] ,
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Weiss’ Mean Field Theory : Critical exponents

Note that cosh(x) = 1+ x2
2! +

x4
4! + . . . and that M = 0 for T > Tc while

M =
(
3 Tc−TT

)1/2 for T < Tc.

Taking the second derivative of the free
energy with respect to the temperature leads to :

C =


3
2kBN T < Tc
0 T > Tc.

Since C ∼ | Tc−TT |−α, the critical exponent α must be zero

In summary, we have derived the following critical exponents :
β = 1/2, δ = 3, γ = 1 and α = 0.
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Weiss’ Mean Field Theory : Critical exponents

Now, we derive an important relationship between the isothermal
magnetic susceptibility and the correlations functions.

Z = Tr exp

Hβ∑
i

Si + βJ
∑
⟨ij⟩

SiSj

 ,

then : ∑
i

⟨Si⟩ =
1
βZ

∂Z
∂H ,

∑
i

⟨SiSj⟩ =
1

β2Z
∂2Z
∂H2 .

On the other side :

χT =
∂M
∂H =

1
βN

∂2 log Z
∂H2 =

1
NkBT

[
1
Z
∂2Z
∂H2 −

1
Z2

(
∂Z
∂H

)]

=
1
N (kBT)

−1

∑
ij

⟨SiSj⟩ −
(∑

i

⟨Si⟩
)2
 =

1
N (kBT)

−1
∑
ij

G(ri − rj)

= (kBT)−1
∑
i

G(xi) = (adkBT)−1
∫
Ω

ddrG(r).
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Weiss’ Mean Field Theory : Critical exponents
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Weiss’ Mean Field Theory : Critical exponents

G have to reflect the divergence in χT,

in general we have :

G(r) ∼ e−|r|/ξ

|r|(d−1)/2ξ(d−3)/2
, for |r| >> ξ.

Combining this result with the equation describing the divergence of
the isothermal susceptibility yields to :(

Tc − T
T

)−1
∼
∫ rd−1e−r/ξ
r(d−1)/2ξ(d−3)/2

dr

∼
(∫

z(d−1)/2e−zdz
)
ξ2,

with z = r/ξ. Thus :

ξ ∼
(
Tc − T
T

)−ν

, (10)

with ν = 1/2.
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Weiss’ Mean Field Theory : Critical exponents

The last critical exponent we mention is η, which describe how the
point correlation function behave at long distances at the critical
point. G(r) for long distances near the critical point is given by :
G(r) ∼ r−(d−2+η), with η = 0. In principal η can be non zero.

Exponent Mean Field Experiment 2D Ising 3D Ising
α 0 0.110-0.116 0 0.110
β 1/2 0.316-0.327 1/8 0.325 ± 0.0015
γ 1 1.23-1.25 7/4 1.2405 ± 0.0015
δ 3 4.6-4.9 15 4.82
ν 1/2 0.625 ± 0.010 1 0.630
η 0 0.016 - 0.06 1/4 0.032 ±0.003

Table 1: Critical exponents for the Ising universality class
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Can we trust MFT ?

From Tab. 1, there is a clear discrepancy between the critical
exponents obtained by the mean field approximation and the
experimental result while the exponents of the 3D Ising model are in
accordance with experience.

This is due to the mean field approximation, from one hand the
exponents in the approximation do not depend on the dimension,
while from the table it is clear that the critical exponents depend on
the dimentionality of the system.On the other hand, the
approximation supposes that the spins do not interact and each
spin feels the same field due to all the other spins, and this
contradicts the essence of magnetism, which is due to the long range
cooperative behavior of spins.
The mean field approximation is clearly not a good choice for
magnetic systems.
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Can we trust MFT ?

The critical exponents satisfy the scaling relations obtained by
thermodynamic considerations, they are given by :

α+ 2β + γ = 2,
γ = β(δ − 1),
γ = ν(2− η).

The precision of the mean field approximation increases as we
increase the dimension of the system. In fact, from the scaling
relation 2− α = dν , where d is the dimension of the system, we can
deduce the critical dimension at which we get precise results from
the mean field approximation. Since α = 0 and ν = 1/2, dc must be 4.
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Landau Theory of Phase
Transitions.



Landau Theory of Phase Transitions.

Landau Theory of Phase Transitions :

1. A theory for all phase transitions.
2. Idea ? : Guessing the potential.
3. Procedure ? : Writing
the potential as function of the
order parameter m. The minimas
with respect to m should describe
the thermodynamic properties
of the system at the critical point.
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The order parameter

The order parameter m is a quantity used to describe phase
transitions, it is zero (non-zero) in the disordered (ordered) phase.

1. The existence of m is not always trivial.
2. The order parameter can be a scalar, vector or tensor.
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Landau Theory

This theory consists of writing a function L called Landau free energy
or Landau functional in terms of the order parameter η and the
coupling constants {Ki}, where we keep only the terms compatible
with the symmetries of the system.

Landau free energy has the
following constraints :

1. L has to follow the symmetries of the system.
2. Near Tc, L is a analytic function of η and [K]. We can write :

L =
∞∑
n=0

an([K])ηn.

3. η=0 in the disordered phase, while it is small and non zero in
the ordered phase near Tc. Thus, for T > Tc we solve the
minimum equation for L by η = 0 and for T < Tc η ̸= 0 solves the
minimum equation. For a homogeneous system we can write :

L =
4∑

n=0
an([K])ηn. (11)
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Landau Theory

At equilibrium :

∂L
∂η

= a1 + 2a2η + 3a3η2 + 4a4η3 = 0. (12)

For T > Tc, η = 0 is zero. Then, a1 = 0. In fact, the system is invariant
under change of η by −η, that is L is an even function : L(η) = L(−η).
Thus :

L = a0([K], T) + a2([K], T)η2 + a4([K], T)η4. (13)

a0([K], T) represents the value L in the disordered phase (η = 0 for
T > Tc), it describes the degrees of freedom of the system that
cannot be understood via the order parameter
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Landau Theory

For a2 and a4 expanding in temperature near Tc, we obtain :

a4 = a04 + (T− Tc)a14 + . . .

a2 = a02 +
(T− Tc)
Tc

a12 + O
(
(T− Tc)2

)
,

Since ∂2L/∂η2 = 1/χ = 0 as T→ Tc, one has a02 = 0 and :

a2 =
(T− Tc)
Tc

a12 + O
(
(T− Tc)2

)
.

The extension to the case H ̸= 0 for the Ising ferromagnet is
immediate

L = a
(
T− Tc
Tc

)
η2 +

1
2bη

4 − Hη. (14)
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Landau Theory : Continuous Phase Transitions
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Figure 11: Landau free energy for different values of T and H. From left to
right : H < 0, H = 0 and H > 0.

When H = 0 and for T > Tc, L has a minimum at η = 0. When T = Tc
Landau potential has zero curvature at η = 0 while η = 0 is still the
global minimum. For T < Tc, Landau free energy shows two
degenerate minima at η = ±ns(T)
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Solving ∂L/∂η = 0 for η we can read off the critical exponent β. We
have :

η = 0 or η =

√
−atb ,

then, for T < Tc β = 1/2.

Landau potential is zero for t > 0 and for t < 0 we can write :

L = − 12
a2t2
b .

The critical exponent α of the heat capacity can be extracted by
writing : CV = −T∂2L/∂T2, then :

Cv =
{
0 T > Tc;
a2/bTc T < Tc.

which shows that the heat capacity exhibit a discontinuity and that
α = 0
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Landau Theory : Continuous Phase Transitions

For the case H > 0. Taking the derivative with respect to H in Eq. 14
gives :

atη + bη3 = 1
2H. (15)

On the critical isotherm, that is on t = 0. We have H ∝ η3 and we
read the critical exponent δ = 3. The isothermal susceptibility χT can
be computed by taking the derivative of Eq. 15 with respect to H.
That is :

χT =
∂η(H)
∂H =

1
2 (at+ 3bη(H)2) , (16)

where η(H) is a solution of Eq. 15. For t > 0, we have η = 0, then
χT ∝ t−1 while for t < 0, we have η = (−at/b)1/2 and χT ∝ t−1. Thus,
the critical exponent is γ = 1.
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Landau Theory : First order Phase Transitions

What happens if we add a cubic term in L ?

In general we have :

L = atη2 + 1
2bη

4 + Cη3 − Hη. (17)

Where a and b are positive. A derivative of L with respect to η at
equilibrium and at zero magnetic field (H = 0) gives :

η =

{
0,
−c±

√
c2 − at/b, with c = 3C/4b.

The solution η ̸= 0 is real when the argument of the square root is
positive, i.e.

√
c2 − at/b > 0. That is, t < t∗ = bc2/a
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Landau Theory : First order Phase Transitions

Figure 12: L as a function of η for different values of T showing how Landau’s
theory describes first order phase transitions

A sufficient but not necessary condition of the occurrence of
continuous phase transitions is that there are no cubic terms in the
potential. In general, the cubic term causes a first order phase
transition.
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Thank you for your attendance
and your attention.
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